A comparative study of two prediction models for brain tumor progression

Deqi Zhou, Loc Tran, Jihong Wang, Jiang Li

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

MR diffusion tensor imaging (DTI) technique together with traditional T1 or T2 weighted MRI scans supplies rich information sources for brain cancer diagnoses. These images form large-scale, high-dimensional data sets. Due to the fact that significant correlations exist among these images, we assume low-dimensional geometry data structures (manifolds) are embedded in the high-dimensional space. Those manifolds might be hidden from radiologists because it is challenging for human experts to interpret high-dimensional data. Identification of the manifold is a critical step for successfully analyzing multimodal MR images. We have developed various manifold learning algorithms (Tran et al. 2011; Tran et al. 2013) for medical image analysis. This paper presents a comparative study of an incremental manifold learning scheme (Tran. et al. 2013) versus the deep learning model (Hinton et al. 2006) in the application of brain tumor progression prediction. The incremental manifold learning is a variant of manifold learning algorithm to handle large-scale datasets in which a representative subset of original data is sampled first to construct a manifold skeleton and remaining data points are then inserted into the skeleton by following their local geometry. The incremental manifold learning algorithm aims at mitigating the computational burden associated with traditional manifold learning methods for large-scale datasets. Deep learning is a recently developed multilayer perceptron model that has achieved start-of-the-art performances in many applications. A recent technique named "Dropout" can further boost the deep model by preventing weight coadaptation to avoid over-fitting (Hinton et al. 2012). We applied the two models on multiple MRI scans from four brain tumor patients to predict tumor progression and compared the performances of the two models in terms of average prediction accuracy, sensitivity, specificity and precision. The quantitative performance metrics were calculated as average over the four patients. Experimental results show that both the manifold learning and deep neural network models produced better results compared to using raw data and principle component analysis (PCA), and the deep learning model is a better method than manifold learning on this data set. The averaged sensitivity and specificity by deep learning are comparable with these by the manifold learning approach while its precision is considerably higher. This means that the predicted abnormal points by deep learning are more likely to correspond to the actual progression region.

Original languageEnglish (US)
Title of host publicationProceedings of SPIE-IS and T Electronic Imaging - Image Processing
Subtitle of host publicationAlgorithms and Systems XIII
EditorsAtanas P. Gotchev, Sos S. Agaian, Karen O. Egiazarian
PublisherSPIE
ISBN (Electronic)9781628414899
DOIs
StatePublished - 2015
EventImage Processing: Algorithms and Systems XIII - San Francisco, United States
Duration: Feb 10 2015Feb 11 2015

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume9399
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Other

OtherImage Processing: Algorithms and Systems XIII
Country/TerritoryUnited States
CitySan Francisco
Period2/10/152/11/15

Keywords

  • Brain tumor diagnosis
  • Deep learning
  • Magnetic resonance imaging
  • Manifold learning

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'A comparative study of two prediction models for brain tumor progression'. Together they form a unique fingerprint.

Cite this