A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells

Yosi Gilad, Yossi Eliaz, Yang Yu, Adam M. Dean, San Jung Han, Li Qin, Bert W. O’Malley, David M. Lonard

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.

Original languageEnglish (US)
Article number399
JournalCommunications Biology
Volume4
Issue number1
DOIs
StatePublished - Dec 2021
Externally publishedYes

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells'. Together they form a unique fingerprint.

Cite this