TY - JOUR
T1 - A Gold Standard-Derived Modular Barcoding Approach to Cancer Transcriptomics
AU - Zhu, Yan
AU - Koleilat, Mohamad Karim I.
AU - Roszik, Jason
AU - Kwong, Man Kam
AU - Wang, Zhonglin
AU - Maru, Dipen M.
AU - Kopetz, Scott
AU - Kwong, Lawrence N.
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024/5
Y1 - 2024/5
N2 - A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a “decoder” to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses.
AB - A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a “decoder” to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses.
KW - barcoding
KW - cancer
KW - modules
KW - next-generation sequencing
UR - http://www.scopus.com/inward/record.url?scp=85194383389&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85194383389&partnerID=8YFLogxK
U2 - 10.3390/cancers16101886
DO - 10.3390/cancers16101886
M3 - Article
C2 - 38791964
AN - SCOPUS:85194383389
SN - 2072-6694
VL - 16
JO - Cancers
JF - Cancers
IS - 10
M1 - 1886
ER -