A Novel Positive-Contrast Magnetic Resonance Imaging Line Marker for High-Dose-Rate (HDR) MRI-Assisted Radiosurgery (MARS)

Research output: Contribution to journalArticlepeer-review

Abstract

Magnetic resonance imaging (MRI) can facilitate accurate organ delineation and optimal dose distributions in high-dose-rate (HDR) MRI-Assisted Radiosurgery (MARS). Its use for this purpose has been limited by the lack of positive-contrast MRI markers that can clearly delineate the lumen of the HDR applicator and precisely show the path of the HDR source on T1- and T2-weighted MRI sequences. We investigated a novel MRI positive-contrast HDR brachytherapy or interventional radiotherapy line marker, C4:S, consisting of C4 (visible on T1-weighted images) complexed with saline. Longitudinal relaxation time (T1) and transverse relaxation time (T2) for C4:S were measured on a 1.5 T MRI scanner. High-density polyethylene (HDPE) tubing filled with C4:S as an HDR brachytherapy line marker was tested for visibility on T1- and T2-weighted MRI sequences in a tissue-equivalent female ultrasound training pelvis phantom. Relaxivity measurements indicated that C4:S solution had good T1-weighted contrast (relative to oil [fat] signal intensity) and good T2-weighted contrast (relative to water signal intensity) at both room temperature (relaxivity ratio > 1; r2/r1 = 1.43) and body temperature (relaxivity ratio > 1; r2/r1 = 1.38). These measurements were verified by the positive visualization of the C4:S (C4/saline 50:50) HDPE tube HDR brachytherapy line marker on both T1- and T2-weighted MRI sequences. Orientation did not affect the relaxivity of the C4:S contrast solution. C4:S encapsulated in HDPE tubing can be visualized as a positive line marker on both T1- and T2-weighted MRI sequences. MRI-guided HDR planning may be possible with these novel line markers for HDR MARS for several types of cancer.

Original languageEnglish (US)
Article number1922
JournalCancers
Volume16
Issue number10
DOIs
StatePublished - May 2024

Keywords

  • brachytherapy
  • high dose rate
  • image guidance
  • interventional radiotherapy
  • magnetic resonance imaging
  • MRI-assisted radiosurgery
  • positive-contrast marker

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'A Novel Positive-Contrast Magnetic Resonance Imaging Line Marker for High-Dose-Rate (HDR) MRI-Assisted Radiosurgery (MARS)'. Together they form a unique fingerprint.

Cite this