Abstract
The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE) are foundational resources in cancer research, providing extensive molecular and phenotypic data. However, large-scale proteomic data across various cancer types for these cohorts remain limited. Here, we expand upon our previous work to generate high-quality protein expression data for approximately 8,000 TCGA patient samples and around 900 CCLE cell line samples, covering 447 clinically relevant proteins, using reverse-phase protein arrays. These protein expression profiles offer profound insights into intertumor heterogeneity and cancer dependency and serve as sensitive functional readouts for somatic alterations. We develop a systematic protein-centered strategy for identifying synthetic lethality pairs and experimentally validate an interaction between protein kinase A subunit α and epidermal growth factor receptor. We also identify metastasis-related protein markers with clinical relevance. This dataset represents a valuable resource for advancing our understanding of cancer mechanisms, discovering protein biomarkers and developing innovative therapeutic strategies.
Original language | English (US) |
---|---|
Pages (from-to) | 1579-1595 |
Number of pages | 17 |
Journal | Nature Cancer |
Volume | 5 |
Issue number | 10 |
DOIs | |
State | Published - Oct 2024 |
ASJC Scopus subject areas
- Oncology
- Cancer Research