An adaptive trial design to optimize dose-schedule regimes with delayed outcomes

Research output: Contribution to journalArticle

Abstract

This paper proposes a two-stage phase I-II clinical trial design to optimize dose-schedule regimes of an experimental agent within ordered disease subgroups in terms of the toxicity-efficacy trade-off. The design is motivated by settings where prior biological information indicates it is certain that efficacy will improve with ordinal subgroup level. We formulate a flexible Bayesian hierarchical model to account for associations among subgroups and regimes, and to characterize ordered subgroup effects. Sequentially adaptive decision-making is complicated by the problem, arising from the motivating application, that efficacy is scored on day 90 and toxicity is evaluated within 30 days from the start of therapy, while the patient accrual rate is fast relative to these outcome evaluation intervals. To deal with this in a practical manner, we take a likelihood-based approach that treats unobserved toxicity and efficacy outcomes as missing values, and use elicited utilities that quantify the efficacy-toxicity trade-off as a decision criterion. Adaptive randomization is used to assign patients to regimes while accounting for subgroups, with randomization probabilities depending on the posterior predictive distributions of utilities. A simulation study is presented to evaluate the design's performance under a variety of scenarios, and to assess its sensitivity to the amount of missing data, the prior, and model misspecification.

Original languageEnglish (US)
Pages (from-to)304-315
Number of pages12
JournalBiometrics
Volume76
Issue number1
DOIs
StatePublished - Mar 1 2020

    Fingerprint

Keywords

  • Bayesian design
  • adaptive randomization
  • missing data
  • optimal treatment regime
  • ordered subgroups
  • phase I-II clinical trial

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)
  • Agricultural and Biological Sciences(all)
  • Applied Mathematics

Cite this