Antitumor Activity of a Mitochondrial-Targeted HSP90 Inhibitor in Gliomas

Shiyou Wei, Delong Yin, Shengnan Yu, Xiang Lin, Milan R. Savani, Kuang Du, Yin Ku, Di Wu, Shasha Li, Hao Liu, Meng Tian, Yaohui Chen, Michelle Bowie, Seethalakshmi Hariharan, Matthew Waitkus, Stephen T. Keir, Eric T. Sugarman, Rebecca A. Deek, Marilyne Labrie, Mustafa KhasrawYiling Lu, Gordon B. Mills, Meenhard Herlyn, Kongming Wu, Lunxu Liu, Zhi Wei, Keith T. Flaherty, Kalil Abdullah, Gao Zhang, David M. Ashley

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Purpose: To investigate the antitumor activity of a mitochondrial-localized HSP90 inhibitor, Gamitrinib, in multiple glioma models, and to elucidate the antitumor mechanisms of Gamitrinib in gliomas. Experimental Design: A broad panel of primary and temozolomide (TMZ)-resistant human glioma cell lines were screened by cell viability assays, flow cytometry, and crystal violet assays to investigate the therapeutic efficacy of Gamitrinib. Seahorse assays were used to measure the mitochondrial respiration of glioma cells. Integrated analyses of RNA sequencing (RNAseq) and reverse phase protein array (RPPA) data were performed to reveal the potential antitumor mechanisms of Gamitrinib. Neurospheres, patient-derived organoids (PDO), cell line–derived xenografts (CDX), and patient-derived xenografts (PDX) models were generated to further evaluate the therapeutic efficacy of Gamitrinib. Results: Gamitrinib inhibited cell proliferation and induced cell apoptosis and death in 17 primary glioma cell lines, 6 TMZ-resistant glioma cell lines, 4 neurospheres, and 3 PDOs. Importantly, Gamitrinib significantly delayed the tumor growth and improved survival of mice in both CDX and PDX models in which tumors were either subcutaneously or intracranially implanted. Integrated computational analyses of RNAseq and RPPA data revealed that Gamitrinib exhibited its antitumor activity via (i) suppressing mitochondrial biogenesis, OXPHOS, and cell-cycle progression and (ii) activating the energy-sensing AMP-activated kinase, DNA damage, and stress response. Conclusions: These preclinical findings established the therapeutic role of Gamitrinib in gliomas and revealed the inhibition of mitochondrial biogenesis and tumor bioenergetics as the primary antitumor mechanisms in gliomas.

Original languageEnglish (US)
Pages (from-to)2180-2195
Number of pages16
JournalClinical Cancer Research
Volume28
Issue number10
DOIs
StatePublished - May 15 2022

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Functional Proteomics Reverse Phase Protein Array Core

Fingerprint

Dive into the research topics of 'Antitumor Activity of a Mitochondrial-Targeted HSP90 Inhibitor in Gliomas'. Together they form a unique fingerprint.

Cite this