Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

Dimitris J. Panagopoulos, Evangelia D. Chavdoula, Ioannis Nezis, Lukas H. Margaritis

Research output: Contribution to journalArticle

89 Citations (Scopus)

Abstract

In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay - a well known technique widely used for detecting fragmented DNA in various types of cells - was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.

Original languageEnglish (US)
Pages (from-to)69-78
Number of pages10
JournalMutation Research - Genetic Toxicology and Environmental Mutagenesis
Volume626
Issue number1-2
DOIs
StatePublished - Jan 10 2007

Fingerprint

Cell Death
Cell Phones
Electromagnetic Fields
Radiation
Drosophila melanogaster
Insects
Oogenesis
Oviposition
Greece
DNA Fragmentation
Ovum
Electromagnetic Radiation
Telecommunications
Biological Models
Electromagnetic Phenomena
Transferases
Radio
Diptera
Oocytes
Nurses

Keywords

  • Cell death
  • DCS
  • DNA fragmentation
  • Drosophila
  • Electromagnetic fields
  • GSM
  • Mobile telephony radiation
  • Oogenesis
  • RF

ASJC Scopus subject areas

  • Genetics
  • Health, Toxicology and Mutagenesis

Cite this

Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. / Panagopoulos, Dimitris J.; Chavdoula, Evangelia D.; Nezis, Ioannis; Margaritis, Lukas H.

In: Mutation Research - Genetic Toxicology and Environmental Mutagenesis, Vol. 626, No. 1-2, 10.01.2007, p. 69-78.

Research output: Contribution to journalArticle

Panagopoulos, Dimitris J. ; Chavdoula, Evangelia D. ; Nezis, Ioannis ; Margaritis, Lukas H. / Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. In: Mutation Research - Genetic Toxicology and Environmental Mutagenesis. 2007 ; Vol. 626, No. 1-2. pp. 69-78.
@article{8d2b4d731f7f4f36b8aca2195101d064,
title = "Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation",
abstract = "In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay - a well known technique widely used for detecting fragmented DNA in various types of cells - was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within {"}safety levels{"} alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.",
keywords = "Cell death, DCS, DNA fragmentation, Drosophila, Electromagnetic fields, GSM, Mobile telephony radiation, Oogenesis, RF",
author = "Panagopoulos, {Dimitris J.} and Chavdoula, {Evangelia D.} and Ioannis Nezis and Margaritis, {Lukas H.}",
year = "2007",
month = "1",
day = "10",
doi = "10.1016/j.mrgentox.2006.08.008",
language = "English (US)",
volume = "626",
pages = "69--78",
journal = "Mutation Research - Genetic Toxicology and Environmental Mutagenesis",
issn = "1383-5718",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation

AU - Panagopoulos, Dimitris J.

AU - Chavdoula, Evangelia D.

AU - Nezis, Ioannis

AU - Margaritis, Lukas H.

PY - 2007/1/10

Y1 - 2007/1/10

N2 - In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay - a well known technique widely used for detecting fragmented DNA in various types of cells - was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.

AB - In the present study, the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay - a well known technique widely used for detecting fragmented DNA in various types of cells - was used to detect cell death (DNA fragmentation) in a biological model, the early and mid stages of oogenesis of the insect Drosophila melanogaster. The flies were exposed in vivo to either GSM 900-MHz (Global System for Mobile telecommunications) or DCS 1800-MHz (Digital Cellular System) radiation from a common digital mobile phone, for few minutes per day during the first 6 days of their adult life. The exposure conditions were similar to those to which a mobile phone user is exposed, and were determined according to previous studies of ours [D.J. Panagopoulos, A. Karabarbounis, L.H. Margaritis, Effect of GSM 900-MHz mobile phone radiation on the reproductive capacity of D. melanogaster, Electromagn. Biol. Med. 23 (1) (2004) 29-43; D.J. Panagopoulos, N. Messini, A. Karabarbounis, A.L. Philippetis, L.H. Margaritis, Radio frequency electromagnetic radiation within "safety levels" alters the physiological function of insects, in: P. Kostarakis, P. Stavroulakis (Eds.), Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields, Heraklion, Crete, Greece, October 17-20, 2000, pp. 169-175, ISBN: 960-86733-0-5; D.J. Panagopoulos, L.H. Margaritis, Effects of electromagnetic fields on the reproductive capacity of D. melanogaster, in: P. Stavroulakis (Ed.), Biological Effects of Electromagnetic Fields, Springer, 2003, pp. 545-578], which had shown a large decrease in the oviposition of the same insect caused by GSM radiation. Our present results suggest that the decrease in oviposition previously reported, is due to degeneration of large numbers of egg chambers after DNA fragmentation of their constituent cells, induced by both types of mobile telephony radiation. Induced cell death is recorded for the first time, in all types of cells constituting an egg chamber (follicle cells, nurse cells and the oocyte) and in all stages of the early and mid-oogenesis, from germarium to stage 10, during which programmed cell death does not physiologically occur. Germarium and stages 7-8 were found to be the most sensitive developmental stages also in response to electromagnetic stress induced by the GSM and DCS fields and, moreover, germarium was found to be even more sensitive than stages 7-8.

KW - Cell death

KW - DCS

KW - DNA fragmentation

KW - Drosophila

KW - Electromagnetic fields

KW - GSM

KW - Mobile telephony radiation

KW - Oogenesis

KW - RF

UR - http://www.scopus.com/inward/record.url?scp=33845312270&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33845312270&partnerID=8YFLogxK

U2 - 10.1016/j.mrgentox.2006.08.008

DO - 10.1016/j.mrgentox.2006.08.008

M3 - Article

C2 - 17045516

AN - SCOPUS:33845312270

VL - 626

SP - 69

EP - 78

JO - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

JF - Mutation Research - Genetic Toxicology and Environmental Mutagenesis

SN - 1383-5718

IS - 1-2

ER -