Characterizing proton-activated materials to develop PET-mediated proton range verification markers

Jongmin Cho, Geoffrey S. Ibbott, Matthew D. Kerr, Richard A. Amos, Francesco C. Stingo, Edith M. Marom, Mylene T. Truong, Diana M. Palacio, Sonia L. Betancourt, Jeremy J. Erasmus, Patricia M. Degroot, Brett W. Carter, Gregory W. Gladish, Bradley S. Sabloff, Marcelo F. Benveniste, Myrna C. Godoy, Shekhar Patil, James Sorensen, Osama R. Mawlawi

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Conventional proton beam range verification using positron emission tomography (PET) relies on tissue activation alone and therefore requires particle therapy PET whose installation can represent a large financial burden for many centers. Previously, we showed the feasibility of developing patient implantable markers using high proton cross-section materials (18O, Cu, and 68Zn) for in vivo proton range verification using conventional PET scanners. In this technical note, we characterize those materials to test their usability in more clinically relevant conditions. Two phantoms made of low-density balsa wood (∼0.1 g cm-3) and beef (∼1.0 g cm-3) were embedded with Cu or 68Zn foils of several volumes (10-50 mm3). The metal foils were positioned at several depths in the dose fall-off region, which had been determined from our previous study. The phantoms were then irradiated with different proton doses (1-5 Gy). After irradiation, the phantoms with the embedded foils were moved to a diagnostic PET scanner and imaged. The acquired data were reconstructed with 20-40 min of scan time using various delay times (30-150 min) to determine the maximum contrast-to-noise ratio. The resultant PET/computed tomography (CT) fusion images of the activated foils were then examined and the foils' PET signal strength/visibility was scored on a 5 point scale by 13 radiologists experienced in nuclear medicine. For both phantoms, the visibility of activated foils increased in proportion to the foil volume, dose, and PET scan time. A linear model was constructed with visibility scores as the response variable and all other factors (marker material, phantom material, dose, and PET scan time) as covariates. Using the linear model, volumes of foils that provided adequate visibility (score 3) were determined for each dose and PET scan time. The foil volumes that were determined will be used as a guideline in developing practical implantable markers.

Original languageEnglish (US)
Pages (from-to)N291-N310
JournalPhysics in medicine and biology
Volume61
Issue number11
DOIs
StatePublished - May 20 2016

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

MD Anderson CCSG core facilities

  • Biostatistics Resource Group

Fingerprint

Dive into the research topics of 'Characterizing proton-activated materials to develop PET-mediated proton range verification markers'. Together they form a unique fingerprint.

Cite this