Chemotherapeutic synergy enhancement through micellar nanotherapeutics

Elvin Blanco, Takafumi Sangai, Funda Meric-Bernstam, Mauro Ferrari

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current chemotherapeutic regimens involve the administration of a combination of agents with hopes of gaining synergistic cell-killing effects observed in vitro. However, drug synergy is rarely realized clinically given the different pharmacokinetic profiles of the drugs. Recent findings show that a combination of rapamycin and paclitaxel proves highly effective at hindering growth of tumors wherein the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway. Our objective was to fabricate a micellar nanotherapeutic platform capable of delivering a multitude of agents shown to synergistically affect a specific pathway (PI3K/Akt/mTOR) in breast cancer. We hypothesized that this concomitant delivery strategy will result in increased antitumor efficacy, given the site-specific and controlled delivery of the two agents. Herein, we demonstrate the successful fabrication of a nanotherepeutic strategy for the treatment of breast tumors with aberrant PI3K/Akt/mTOR pathways. Resulting polymer micelles were small in size (∼30 nm) and showed high levels of drug incorporation efficiency of both rapamycin and paclitaxel. Current studies involve the examination of release kinetics and antitumor efficacy in in vitro and in vivo models.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME 1st Global Congress on NanoEngineering for Medicine and Biology 2010, NEMB2010
PublisherASME
Pages101-103
Number of pages3
ISBN (Print)9780791843925
DOIs
StatePublished - 2010
Event1st Global Congress on NanoEngineering for Medicine and Biology: Advancing Health Care through NanoEngineering and Computing, NEMB 2010 - Houston, TX, United States
Duration: Feb 7 2010Feb 10 2010

Publication series

NameProceedings of the ASME 1st Global Congress on NanoEngineering for Medicine and Biology 2010, NEMB2010

Other

Other1st Global Congress on NanoEngineering for Medicine and Biology: Advancing Health Care through NanoEngineering and Computing, NEMB 2010
Country/TerritoryUnited States
CityHouston, TX
Period2/7/102/10/10

ASJC Scopus subject areas

  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'Chemotherapeutic synergy enhancement through micellar nanotherapeutics'. Together they form a unique fingerprint.

Cite this