Comparison of virtual to true unenhanced abdominal computed tomography images acquired using rapid kV-switching dual energy imaging

Research output: Contribution to journalArticlepeer-review

Abstract

Objective To compare “virtual” unenhanced (VUE) computed tomography (CT) images, reconstructed from rapid kVp-switching dual-energy computed tomography (DECT), to “true” unenhanced CT images (TUE), in clinical abdominal imaging. The ability to replace TUE with VUE images would have many clinical and operational advantages. Methods VUE and TUE images of 60 DECT datasets acquired for standard-of-care CT of pancreatic cancer were retrospectively reviewed and compared, both quantitatively and qualitatively. Comparisons included quantitative evaluation of CT numbers (Hounsfield Units, HU) measured in 8 different tissues, and 6 qualitative image characteristics relevant to abdominal imaging, rated by 3 experienced radiologists. The observed quantitative and qualitative VUE and TUE differences were compared against boundaries of clinically relevant equivalent thresholds to assess their equivalency, using modified paired t-tests and Bayesian hierarchical modeling. Results Quantitatively, in tissues containing high concentrations of calcium or iodine, CT numbers measured in VUE images were significantly different from those in TUE images. CT numbers in VUE images were significantly lower than TUE images when calcium was present (e.g. in the spine, 73.1 HU lower, p < 0.0001); and significantly higher when iodine was present (e.g. in renal cortex, 12.9 HU higher, p < 0.0001). Qualitatively, VUE image ratings showed significantly inferior depiction of liver parenchyma compared to TUE images, and significantly more cortico-medullary differentiation in the kidney. Conclusions Significant differences in VUE images compared to TUE images may limit their application and ability to replace TUE images in diagnostic abdominal CT imaging.

Original languageEnglish (US)
Article numbere0238582
JournalPloS one
Volume15
Issue number9 September
DOIs
StatePublished - Sep 2020

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Comparison of virtual to true unenhanced abdominal computed tomography images acquired using rapid kV-switching dual energy imaging'. Together they form a unique fingerprint.

Cite this