Demonstration of Safety and Feasibility of Hydrogel Marking of the Pancreas–Duodenum Interface for Image Guided Radiation Therapy (IGRT) in a Porcine Model: Implications in IGRT for Pancreatic Cancer Patients

Avani D. Rao, Eun Ji Shin, Sarah E. Beck, Caroline Garrett, Seong Hun Kim, Nam Ju Lee, Eleni Liapi, John Wong, Joseph Herman, Amol Narang, Kai Ding

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Purpose: To test the feasibility and safety of injecting a high-contrast hydrogel marker at the head of the pancreas (HOP) and duodenum interface and assesses the marker visibility on cone beam computed tomography (CBCT) to localize this important boundary during image guided radiation therapy in a porcine model. Methods and Materials: This was a 2-stage study. The feasibility/visibility stage evaluated the ability to place the hydrogel using endoscopic ultrasound guidance on 8 swine (4 euthanized at post-injection day 8, 4 euthanized at post-injection day 22) and assessed the quality of visibility of the marked location on CBCT in the longer-surviving group. The risk assessment stage evaluated the toxicity of targeted intrapancreatic injections (3 swine) and intramural duodenal wall injections (3 swine) to assess toxicity of a misplaced hydrogel injection. All swine underwent postmortem examination and histopathologic studies. Results: The HOP–duodenum interface was successfully marked using hydrogel in 6 of the 8 swine. Histopathologic examination of the 6 successful hydrogel injections showed mild/minimal (4 cases) or moderate (2 cases) reactive inflammation isolated to the injection site. Of the 4 swine survived to 22 days, 3 demonstrated successful hydrogel placement at the HOP–duodenum interface, and this marked location was clearly visible for positional guidance on CBCT. There was no evidence of pancreatitis or duodenal toxicity in the swine undergoing targeted intrapancreatic or intramural duodenum injections for the risk assessment stage. Conclusions: We demonstrate the feasibility and safety of injecting a hydrogel marker to highlight the HOP–duodenum interface that has acceptable visibility on CBCT. This technique, translated to humans, enables on-board visualization of this important boundary between the radiation target and dose-limiting, radiosensitive duodenum, facilitating efforts to safely deliver dose-escalated radiation therapy.

Original languageEnglish (US)
Pages (from-to)640-645
Number of pages6
JournalInternational Journal of Radiation Oncology Biology Physics
Volume101
Issue number3
DOIs
StatePublished - Jul 1 2018

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research

Fingerprint

Dive into the research topics of 'Demonstration of Safety and Feasibility of Hydrogel Marking of the Pancreas–Duodenum Interface for Image Guided Radiation Therapy (IGRT) in a Porcine Model: Implications in IGRT for Pancreatic Cancer Patients'. Together they form a unique fingerprint.

Cite this