Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors

Servando Hernandez Vargas, Christie Lin, Julie Voss, Sukhen C. Ghosh, Daniel M. Halperin, Solmaz AghaAmiri, Hop S.Tran Cao, Naruhiko Ikoma, Adam J. Uselmann, Ali Azhdarinia

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

SIGNIFICANCE: The use of cancer-targeted contrast agents in fluorescence-guided surgery (FGS) has the potential to improve intraoperative visualization of tumors and surgical margins. However, evaluation of their translational potential is challenging. AIM: We examined the utility of a somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent in combination with a benchtop near-infrared fluorescence (NIRF) imaging system to visualize mouse xenografts under conditions that simulate the clinical FGS workflow for open surgical procedures. APPROACH: The dual-labeled somatostatin analog, Ga67-MMC(IR800)-TOC, was injected into mice (n  =  24) implanted with SSTR2-expressing tumors and imaged with the customized OnLume NIRF imaging system (Madison, Wisconsin). In vivo and ex vivo imaging were performed under ambient light. The optimal dose (0.2, 0.5, and 2 nmol) and imaging time point (3, 24, 48, and 72 h) were determined using contrast-to-noise ratio (CNR) as the image quality parameter. Video captures of tumor resections were obtained to provide an FGS readout that is representative of clinical utility. Finally, a log-transformed linear regression model was fitted to assess congruence between fluorescence readouts and the underlying drug distribution. RESULTS: The drug-device combination provided high in vivo and ex vivo contrast (CNRs  >  3, except lung at 3 h) at all time points with the optimal dose of 2 nmol. The optimal imaging time point was 24-h post-injection, where CNRs  >  6.5 were achieved in tissues of interest (i.e., pancreas, small intestine, stomach, and lung). Intraoperative FGS showed excellent utility for examination of the tumor cavity pre- and post-resection. The relationship between fluorescence readouts and gamma counts was linear and strongly correlated (n  =  334, R2  =  0.71; r  =  0.84; P  <  0.0001). CONCLUSION: The innovative OnLume NIRF imaging system enhanced the evaluation of Ga67-MMC(IR800)-TOC in tumor models. These components comprise a promising drug-device combination for FGS in patients with SSTR2-expressing tumors.

Original languageEnglish (US)
JournalJournal of biomedical optics
Volume25
Issue number12
DOIs
StatePublished - Dec 1 2020

Keywords

  • cancer-targeted agent
  • dual labeling
  • fluorescence system instrumentation
  • fluorescence-guided surgery
  • intraoperative imaging
  • somatostatin receptor

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors'. Together they form a unique fingerprint.

Cite this