Development of a human immuno-oncology therapeutic agent targeting HER2: Targeted delivery of granzyme B

Lawrence H. Cheung, Yunli Zhao, Ana Alvarez-Cienfuegos, Khalid A. Mohamedali, Yu J. Cao, Walter N. Hittelman, Michael G. Rosenblum

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Background: Immunotherapeutic approaches designed to augment T and B cell mediated killing of tumor cells has met with clinical success in recent years suggesting tremendous potential for treatment in a broad spectrum of tumor types. After complex recognition of target cells by T and B cells, delivery of the serine protease granzyme B (GrB) to tumor cells comprises the cytotoxic insult resulting in a well-characterized, multimodal apoptotic cascade. Methods: We designed a recombinant fusion construct, GrB-Fc-4D5, composed of a humanized anti-HER2 scFv fused to active GrB for recognition of tumor cells and internal delivery of GrB, simulating T and B cell therapy. We assessed the construct's antigen-binding specificity and GrB enzymatic activity, as well as in vitro cytotoxicity and internalization into target and control cells. We also assessed pharmacokinetic and toxicology parameters in vivo. Results: GrB-Fc-4D5 was highly cytotoxic to Her2 positive cells such as SKBR3, MCF7 and MDA-MB-231 with IC50 values of 56, 99 and 27 nM, respectively, and against a panel of HER2+ cell lines regardless of endogenous expression levels of the PI-9 inhibitor. Contemporaneous studies with Kadcyla demonstrated similar levels of in vitro activity against virtually all cells tested. GrB-Fc-4D5 internalized rapidly into target SKOV3 cells within 1 h of exposure rapidly delivering GrB to the cytoplasmic compartment. In keeping with its relatively high molecular weight (160 kDa), the construct demonstrated a terminal-phase serum half-life in mice of 39.2 h. Toxicity studies conducted on BALB/c mice demonstrated no statistically significant changes in SGPT, SGOT or serum LDH. Histopathologic analysis of tissues from treated mice demonstrated no drug-related changes in any tissues examined. Conclusion: GrB-Fc-4D5 shows excellent, specific cytotoxicity and demonstrates no significant toxicity in normal, antigen-negative murine models. This construct constitutes a novel approach against HER2-expressing tumors and is an excellent candidate for further development.

Original languageEnglish (US)
Article number332
JournalJournal of Experimental and Clinical Cancer Research
Volume38
Issue number1
DOIs
StatePublished - Jul 30 2019

Keywords

  • Granzyme B
  • HER2
  • Immunotherapy
  • Kadcyla
  • Pharmacokinetics

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Research Animal Support Facility
  • Cytogenetics and Cell Authentication Core

Fingerprint

Dive into the research topics of 'Development of a human immuno-oncology therapeutic agent targeting HER2: Targeted delivery of granzyme B'. Together they form a unique fingerprint.

Cite this