Dose calculation errors as a component of failing IROC lung and spine phantom irradiations

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Purpose: Between July 2013 and August 2019, 22% of the imaging and radiation oncology core (IROC) spine, and 15% of the moving lung phantom irradiations have failed to meet established acceptability criteria. The spine phantom simulates a highly modulated stereotactic body radiation therapy (SBRT) case, whereas the lung phantom represents a low-to-none modulation moving target case. In this study, we assessed the contribution of dose calculation errors to these phantom results and evaluated their effects on failure rates. Methods: We evaluated dose calculation errors by comparing the calculation accuracy of various institutions’ treatment planning systems (TPSs) vs IROC-Houston’s previously established independent dose recalculation system (DRS). Each calculation was compared with the measured dose actually delivered to the phantom; cases in which the recalculation was more accurate were interpreted as a deficiency in the institution's TPS. A total of 258 phantom irradiation plans (172 lung and 86 spine) were recomputed. Results: Overall, the DRS performed better than the TPSs in 47% of the spine phantom cases. However, the DRS was more accurate in 93% of failing spine phantom cases (with an average improvement of 2.35%), indicating a deficiency in the institution's treatment planning system. Deficiencies in dose calculation accounted for 60% of the overall discrepancy between measured and planned doses among spine phantoms. In contrast, lung phantom DRS calculations were more accurate in only 35% and 42% of all and failing lung phantom cases respectively, indicating that dose calculation errors were not substantially present. These errors accounted for only 30% of the overall discrepancy between measured and planned doses. Conclusions: Dose calculation errors are common and substantial in IROC spine phantom irradiations, highlighting a major failure mode in this phantom and in clinical treatment management of these cases. In contrast, dose calculation accuracy had only a minimal contribution to failing lung phantom results, indicating that other failure modes drive problems with this phantom and similar clinical treatments.

Original languageEnglish (US)
Pages (from-to)4502-4508
Number of pages7
JournalMedical physics
Volume47
Issue number9
DOIs
StatePublished - Sep 1 2020

Keywords

  • IROC
  • TPS dose calculation
  • lung phantom
  • phantom irradiation
  • spine phantom

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

MD Anderson CCSG core facilities

  • Biostatistics Resource Group

Fingerprint

Dive into the research topics of 'Dose calculation errors as a component of failing IROC lung and spine phantom irradiations'. Together they form a unique fingerprint.

Cite this