Effect of heterogeneous material of the lung on deformable image registration

Adil Al Mayah, Joanne Moseley, Mike Velec, Kristy Brock

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

Patient specific 3D finite element models have been developed to investigate the effect of heterogeneous material properties on modeling of the deformation of the lungs by including the bronchial trees of each lung. Each model consists of both lungs, body, tumor, and bronchial trees. Triangular shell elements with 0.1 cm wall thickness are used to model the bronchial trees. Body, lungs and tumor are modeled using 4-node tetrahedral elements. Experimental test data are used for the nonlinear material properties of the lungs. Three elastic modulii of 0.5, 10 and 18 MPa are used for the bronchial tree. Frictionless contact surfaces are applied to lung surfaces and cavities. The accuracy of the results is examined using an average of 40 bifurcation points. Preliminary results have shown an insignificant effect of modeling the bronchial trees explicitly on the overall accuracy of the model. However, local changes in the predicted motion of the bronchial tree of up to 5.2 mm were observed, indicating that modeling the bronchial tree explicitly, with unique material properties, may ensure a more accurately detailed model of the lung as well as reduced maximum residual errors.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2009
Subtitle of host publicationVisualization, Image-Guided Procedures, and Modeling
DOIs
StatePublished - 2009
Externally publishedYes
EventMedical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging - Lake Buena Vista, FL, United States
Duration: Feb 8 2009Feb 10 2009

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7261
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2009: Biomedical Applications in Molecular, Structural, and Functional Imaging
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period2/8/092/10/09

Keywords

  • Bronchial tree
  • Contact surface
  • FEM
  • Heterogeneity
  • Lung
  • Registration

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Effect of heterogeneous material of the lung on deformable image registration'. Together they form a unique fingerprint.

Cite this