TY - JOUR
T1 - Gastrointestinal stromal tumors
T2 - Overview of pathologic features, molecular biology, and therapy with imatinib mesylate
AU - Koh, J. S.
AU - Trent, J.
AU - Chen, L.
AU - El-Naggar, A.
AU - Hunt, K.
AU - Pollock, R.
AU - Zhang, Wei
PY - 2004/4
Y1 - 2004/4
N2 - Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. These tumors develop at any site but are most commonly reported in the stomach. They originate from the neoplastic transformation of the intestinal pacemaker cell, the interstitial cell of Cajal. GISTs strongly express the receptor tyrosine kinase KIT and have mutations in the KIT gene, most frequently in exon 11 encoding the intracellular juxtamembranous region. Expression of KIT is seen in almost all GISTs, regardless of the site of origin, histologic appearance, or biologic behavior, and is therefore regarded as one of the key diagnostic markers. Distinction from smooth muscle tumors, such as leiomyosarcomas, and other mesenchymal tumors is very important because of prognostic differences and therapeutic strategies. Predicting the biologic behavior of GISTs is often difficult by conventional pathologic examination; tumor size and mitotic rate are the most important prognostic indicators. The prognostic significance of KIT mutations is controversial and thus far has not been clearly linked with biologic behavior. KIT mutations are associated with tumor development, and cytogenetic aberrations are associated with tumor progression. The pathogenesis of GISTs involves a gain-of-function mutation in the KIT proto-oncogene, leading to ligand-independent constitutive activation of the KIT receptor. KIT-wild-type GISTs have shown mutually exclusive platelet-derived growth factor receptor (PDGFR) mutation and activation. The use of imatinib mesylate (also known as Gleevec or STI-571) has greatly increased the therapeutic efficacy for this otherwise chemotherapy-resistant tumor. GISTs with very low levels of KIT expression may respond to imatinib mesylate therapy if the receptors are activated by specific mechanisms. KIT-activating mutations fall into two groups: the regulatory type and the enzymatic site type. The regulatory type of mutation is conserved at the imatinib binding site, whereas the enzymatic site mutation has a structurally changed drug-binding site, resulting in drug resistance. Resistance to the drug is the major cause of treatment failure in cancer therapy, emphasizing the need for researchers to understand KIT signaling pathways so as to identify new therapeutic targets. This review summarizes the pathologic features of GISTs, recent advances in understanding their molecular and biologic features, and therapy with imatinib mesylate.
AB - Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. These tumors develop at any site but are most commonly reported in the stomach. They originate from the neoplastic transformation of the intestinal pacemaker cell, the interstitial cell of Cajal. GISTs strongly express the receptor tyrosine kinase KIT and have mutations in the KIT gene, most frequently in exon 11 encoding the intracellular juxtamembranous region. Expression of KIT is seen in almost all GISTs, regardless of the site of origin, histologic appearance, or biologic behavior, and is therefore regarded as one of the key diagnostic markers. Distinction from smooth muscle tumors, such as leiomyosarcomas, and other mesenchymal tumors is very important because of prognostic differences and therapeutic strategies. Predicting the biologic behavior of GISTs is often difficult by conventional pathologic examination; tumor size and mitotic rate are the most important prognostic indicators. The prognostic significance of KIT mutations is controversial and thus far has not been clearly linked with biologic behavior. KIT mutations are associated with tumor development, and cytogenetic aberrations are associated with tumor progression. The pathogenesis of GISTs involves a gain-of-function mutation in the KIT proto-oncogene, leading to ligand-independent constitutive activation of the KIT receptor. KIT-wild-type GISTs have shown mutually exclusive platelet-derived growth factor receptor (PDGFR) mutation and activation. The use of imatinib mesylate (also known as Gleevec or STI-571) has greatly increased the therapeutic efficacy for this otherwise chemotherapy-resistant tumor. GISTs with very low levels of KIT expression may respond to imatinib mesylate therapy if the receptors are activated by specific mechanisms. KIT-activating mutations fall into two groups: the regulatory type and the enzymatic site type. The regulatory type of mutation is conserved at the imatinib binding site, whereas the enzymatic site mutation has a structurally changed drug-binding site, resulting in drug resistance. Resistance to the drug is the major cause of treatment failure in cancer therapy, emphasizing the need for researchers to understand KIT signaling pathways so as to identify new therapeutic targets. This review summarizes the pathologic features of GISTs, recent advances in understanding their molecular and biologic features, and therapy with imatinib mesylate.
KW - GIST
KW - Imatinib mesylate
KW - KIT
UR - http://www.scopus.com/inward/record.url?scp=1842558973&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=1842558973&partnerID=8YFLogxK
M3 - Review article
C2 - 15024716
AN - SCOPUS:1842558973
SN - 0213-3911
VL - 19
SP - 565
EP - 574
JO - Histology and histopathology
JF - Histology and histopathology
IS - 2
ER -