Generalized Q-space MRI reveals macroscopic patterns of tumor architecture in vivo

Erik N. Taylor, Yao Ding, Leon Lin, George E. Aninwene, Matthew P. Hoffman, Clifton D. Fuller, Richard J. Gilbert

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current approaches for studying tumor activity in patients involve molecular characterization in excised tissue or biopsied samples. Recognizing that tumors are composed of heterogeneous arrays of cells and their environment, there is a compelling rationale to explore the macroscopic organization of tumor tissue. We present a novel methodology for probing the micro-structural constituents of tumors in vivo utilizing generalized Q-space MRI. This approach employs varying magnetic field gradients and diffusion sensitivities to yield voxel-scale probability distribution functions of proton diffusivity, and then maps multi-voxel cellular alignment with tractography. Using this methodology, we describe the presence of macroscopic organizational features in patients with head and neck cancers, specifically depicting regional differences between the geometrically coherent periphery and incoherent core region. Such methods may comprise a method for assessing attributes of tumor biology in vivo and for predicting the response of such tumors to various drugs and interventions.

Original languageEnglish (US)
Title of host publication2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781479983605
DOIs
StatePublished - Jun 2 2015
Event2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015 - Troy, United States
Duration: Apr 17 2015Apr 19 2015

Publication series

Name2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015

Other

Other2015 41st Annual Northeast Biomedical Engineering Conference, NEBEC 2015
Country/TerritoryUnited States
CityTroy
Period4/17/154/19/15

Keywords

  • Q-space imaging
  • Tumor organization
  • biological connectivity
  • diffusion-weighted magnetic resonance imaging

ASJC Scopus subject areas

  • Biotechnology
  • Cancer Research
  • Cell Biology
  • Molecular Medicine
  • Biomedical Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Generalized Q-space MRI reveals macroscopic patterns of tumor architecture in vivo'. Together they form a unique fingerprint.

Cite this