TY - JOUR
T1 - Genetic aberrations of gastrointestinal stromal tumors
AU - Yang, Jilong
AU - Du, Xiaoling
AU - Lazar, Alexander J.F.
AU - Pollock, Raphael
AU - Hunt, Kelly
AU - Chen, Kexin
AU - Hao, Xishan
AU - Trent, Jonathan
AU - Zhang, Wei
PY - 2008/10/1
Y1 - 2008/10/1
N2 - Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract and is associated with mutations of the KIT or PDGFRA gene. In addition, other genetic events are believed to be involved in GIST tumorigenesis. Cytogenetic aberrations associated with these tumors thus far described include loss of 1p, 13q, 14q, or 15q, loss of heterozygosity of 22q, numeric chromosomal imbalances, and nuclear/mitochondrial microsatellite instability. Molecular genetic aberrations include loss of heterozygosity of p16(INK4A) and p14(ARF), methylation of p15(INK4B), homozygous loss of the Hox11L1 gene, and amplification of C-MYC, MDM2, EGFR1, and CCND1. GISTs in patients with neurofibromatosis type 1 appear to lack the KIT and PDGFRA mutations characteristic of GISTs and may have a different pathogenetic mechanism. Gene mutations of KIT or PDGFRA are critical in GISTs, because the aberrant versions not only are correlated with the specific cell morphology, histologic phenotype, metastasis, and prognosis, but also are the targets of therapy with imatinib and other agents. Furthermore, specific mutations in KIT and PDGFR appear to lead to differential drug sensitivity and may in the future guide selection of tyrosine kinase inhibitors. Activation of the receptor tyrosine kinases involves a signal transduction pathway whose components (mitogen-activated protein kinase, AKT, phosphoinositide 3-kinase, mammalian target of rapamycin, and RAS) are also possible targets of inhibition. A new paradigm of classification, integrating the standard clinical and pathological criteria with molecular aberrations, may permit personalized prognosis and treatment.
AB - Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm in the gastrointestinal tract and is associated with mutations of the KIT or PDGFRA gene. In addition, other genetic events are believed to be involved in GIST tumorigenesis. Cytogenetic aberrations associated with these tumors thus far described include loss of 1p, 13q, 14q, or 15q, loss of heterozygosity of 22q, numeric chromosomal imbalances, and nuclear/mitochondrial microsatellite instability. Molecular genetic aberrations include loss of heterozygosity of p16(INK4A) and p14(ARF), methylation of p15(INK4B), homozygous loss of the Hox11L1 gene, and amplification of C-MYC, MDM2, EGFR1, and CCND1. GISTs in patients with neurofibromatosis type 1 appear to lack the KIT and PDGFRA mutations characteristic of GISTs and may have a different pathogenetic mechanism. Gene mutations of KIT or PDGFRA are critical in GISTs, because the aberrant versions not only are correlated with the specific cell morphology, histologic phenotype, metastasis, and prognosis, but also are the targets of therapy with imatinib and other agents. Furthermore, specific mutations in KIT and PDGFR appear to lead to differential drug sensitivity and may in the future guide selection of tyrosine kinase inhibitors. Activation of the receptor tyrosine kinases involves a signal transduction pathway whose components (mitogen-activated protein kinase, AKT, phosphoinositide 3-kinase, mammalian target of rapamycin, and RAS) are also possible targets of inhibition. A new paradigm of classification, integrating the standard clinical and pathological criteria with molecular aberrations, may permit personalized prognosis and treatment.
KW - Gastrointestinal stromal tumor
KW - Genotype
KW - Karyotype
KW - Receptor tyrosine kinase
UR - http://www.scopus.com/inward/record.url?scp=54049147333&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=54049147333&partnerID=8YFLogxK
U2 - 10.1002/cncr.23778
DO - 10.1002/cncr.23778
M3 - Review article
C2 - 18671247
AN - SCOPUS:54049147333
SN - 0008-543X
VL - 113
SP - 1532
EP - 1543
JO - Cancer
JF - Cancer
IS - 7
ER -