Heat shock factor 1 (HSF1-pSer326) predicts response to bortezomib-containing chemotherapy in pediatric AML: a COG report

Fieke W. Hoff, Anneke D. van Dijk, Yihua Qiu, Peter P. Ruvolo, Robert B. Gerbing, Amanda R. Leonti, Gaye N. Jenkins, Alan S. Gamis, Richard Aplenc, E. Anders Kolb, Todd A. Alonzo, Soheil Meshinchi, Eveline S.J.M. de Bont, Sophia W.M. Bruggeman, Steven M. Kornblau, Terzah M. Horton

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Bortezomib (BTZ) was recently evaluated in a randomized phase 3 clinical trial by the Children's Oncology Group (COG) that compared standard chemotherapy (cytarabine, daunorubicin, and etoposide [ADE]) vs standard therapy with BTZ (ADEB) for de novo pediatric acute myeloid leukemia (AML). Although the study concluded that BTZ did not improve outcome overall, we examined patient subgroups benefiting from BTZ-containing chemotherapy using proteomic analyses. The proteasome inhibitor BTZ disrupts protein homeostasis and activates cytoprotective heat shock responses. Total heat shock factor 1 (HSF1) and phosphorylated HSF1 (HSF1-pSer326) were measured in leukemic cells from 483 pediatric patients using reverse phase protein arrays. HSF1-pSer326 phosphorylation was significantly lower in pediatric AML compared with CD34+ nonmalignant cells. We identified a strong correlation between HSF1-pSer326 expression and BTZ sensitivity. BTZ significantly improved outcome of patients with low-HSF1-pSer326 with a 5-year event-free survival of 44% (ADE) vs 67% for low-HSF1-pSer326 treated with ADEB (P = .019). To determine the effect of HSF1 expression on BTZ potency in vitro, cell viability with HSF1 gene variants that mimicked phosphorylated (S326A) and nonphosphorylated (S326E) HSF1-pSer326 were examined. Those with increased HSF1 phosphorylation showed clear resistance to BTZ vs those with wild-type or reduced HSF1-phosphorylation. We hypothesize that HSF1-pSer326 expression could identify patients who benefit from BTZ-containing chemotherapy. Key Points: • Low-HSF1-pSer326 is a favorable prognostic protein in patients treated with BTZ-containing chemotherapy. • Addition of BTZ to standard chemotherapy significantly improves outcome in low-HSF1-pSer326 pediatric patients with AML.

Original languageEnglish (US)
Pages (from-to)1050-1060
Number of pages11
JournalBlood
Volume137
Issue number8
DOIs
StatePublished - Feb 25 2021

ASJC Scopus subject areas

  • Biochemistry
  • Immunology
  • Hematology
  • Cell Biology

MD Anderson CCSG core facilities

  • Functional Proteomics Reverse Phase Protein Array Core
  • Bioinformatics Shared Resource

Fingerprint

Dive into the research topics of 'Heat shock factor 1 (HSF1-pSer326) predicts response to bortezomib-containing chemotherapy in pediatric AML: a COG report'. Together they form a unique fingerprint.

Cite this