Hot isostatic pressing to enhance inter-laminar tensile strength in additively manufactured carbon fiber-PEEK parts

Nathaniel Heathman, Timothy Yap, Mehran Tehrani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Additive manufacturing (AM) of composites is a rapidly expanding technology with an increasing focus on printing end use parts rather than prototyping. Fused filament fabrication (FFF) is relatively inexpensive and fast compared to other AM technologies. The resulting FFF parts, however, suffer low interlaminar mechanical properties due to poor layer-to-layer adhesion and voids. A possible solution to this would be post processing using hot isostatic pressing (HIP). HIP utilizes high temperatures and pressures to consolidate parts in turn reducing void content, enhancing inter-layer adhesion, and increasing the crystallinity of the parts. This paper seeks to investigate the effects of HIP on structure and interlaminar strength of short carbon fiber reinforced polyetherketoneketone (PEKK) parts manufactured via FFF. Coupons were printed vertically (normal to the print bed and along the Z-direction) and post processed for one hour in an in-house HIP device. The HIP pressure was set to 0, 20, and 200 psig and a constant temperature of 165 °C (slightly above its glass transition temperature) was used. HIP treated samples were characterized via tensile tests to evaluate their tensile strength and modulus. Additionally, the samples were analyzed using X-ray micro computed tomography (µCT) device to assess their void content before and after the HIP processing. Structure, morphology, and properties for all tested samples were compared and correlated to the HIP treatment conditions. It was concluded that HIP can effectively increase the inter-layer mechanical properties of FFF parts by up to 50% in strength and 30% in modulus, rendering them more suitable for end use applications. Based on the new understanding of failure resulted from this study, post-treatment strategies to further increase the Z tensile properties in FFF are suggested.

Original languageEnglish (US)
Title of host publicationProceedings of the American Society for Composites - 35th Technical Conference, ASC 2020
EditorsKishore Pochiraju, Nikhil Gupta
PublisherDEStech Publications
Pages97-106
Number of pages10
ISBN (Electronic)9781605956657
StatePublished - 2020
Externally publishedYes
Event35th Annual American Society for Composites Technical Conference, ASC 2020 - Virtual, Online
Duration: Sep 14 2020Sep 17 2020

Publication series

NameProceedings of the American Society for Composites - 35th Technical Conference, ASC 2020

Conference

Conference35th Annual American Society for Composites Technical Conference, ASC 2020
CityVirtual, Online
Period9/14/209/17/20

ASJC Scopus subject areas

  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Hot isostatic pressing to enhance inter-laminar tensile strength in additively manufactured carbon fiber-PEEK parts'. Together they form a unique fingerprint.

Cite this