In vivo determination of optical properties and fluorophore characteristics of non-melanoma skin cancer

Narasimhan Rajaram, Dianne Kovacic, Michael F. Migden, Jason S. Reichenberg, Tri H. Nguyen, James W. Tunnell

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations

Abstract

Diffuse optical spectroscopy (DOS) and laser-induced fluorescence (LIF) techniques have widely been used as non-invasive tools for early cancer detection in several organs including the cervix, oral cavity and gastrointestinal tract. Using a combined DOS/LIF approach, one can simultaneously measure the morphology and biochemical composition of tissue and use these features to diagnose malignancy. We report both the optical properties and native fluorophore characteristics of non-melanoma skin cancer in the UV-visible range. We collected in vivo diffuse reflectance and intrinsic fluorescence measurements from 44 skin lesions on 37 patients. The skin sites were further categorized into three groups of non-melanoma skin cancer according to histopathology: 1) pre-cancerous actinic keratosis 2) malignant squamous cell carcinoma (SCC) and 3) basal cell carcinoma (BCC). We used a custom-built probe-based clinical system that collects both white light reflectance and laser-induced fluorescence in the wavelength range of 350-700 nm. We extracted the blood volume fraction, oxygen saturation, blood vessel size, tissue micro-architecture and melanin content from diffuse reflectance measurements. In addition, we determined the native fluorophore contributions of NADH, collagen and FAD from laser-induced fluorescence for all groups. The scattering from tissue decreased with progression from clinically normal to precancerous actinic keratosis to malignant SCC. A similar trend was observed for clinically normal skin and malignant BCC. Statistically significant differences were observed in the collagen contributions, which were lower in malignant SCC and BCC as compared to normal skin. Our data demonstrates that the mean optical properties and fluorophore contributions of normal, benign and malignant non-melanoma cancers are significantly different from each other and can potentially be used as biomarkers for the early detection of skin cancer.

Original languageEnglish (US)
Article number716102
JournalProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7161
DOIs
StatePublished - 2009
EventPhotonic Therapeutics and Diagnostics V - San Jose, CA, United States
Duration: Jan 24 2009Jan 26 2009

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'In vivo determination of optical properties and fluorophore characteristics of non-melanoma skin cancer'. Together they form a unique fingerprint.

Cite this