Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2

Akio Matsubara, Mikio Kan, Shuju Feng, Wallace L. McKeehan

Research output: Contribution to journalArticle

88 Citations (Scopus)

Abstract

A loss of expression of fibroblast growth factor (FGF) receptor 2 IIIb (FGFR2IIIb), which responds to stroma-derived FGF, accompanies progression of premalignant androgen-responsive rat prostate tumor epithelial cells to the malignant phenotype. Concurrently, the level of FGFR2 gene expression is reduced and lost altogether in over 30% of cells, whereas all malignant cells abnormally express FGFR1, which is normally confined to stromal cells (S. Feng et al., Cancer Res., 57:5369-5378, 1997). To determine the relative roles of the FGFR2 and FGFR1 kinases in growth of malignant cells, we transfected malignant prostate epithelial cells with the wild-type FGFR2IIIb kinase and an artificial chimeric construct (FGFR2IIIb/R1) composed of the FGFR2IIIb ectodomain and the FGFR1 kinase domain. Population growth kinetics, in both the absence and presence of FGF-7, which binds only the FGFR2IIIb ectodomain, were then examined in the transfected cell populations. In contrast to the untransfected malignant tumor cells and those expressing the FGFR2IIIb/R1 chimera, FGF-7 caused a dose-dependent net inhibition of the population growth rates of cells expressing the full-length FGFR2IIIb kinase. The results suggest that although the FGFR2 kinase can mediate positive mitogenic effects, it mediates a net restriction on the growth of prostate tumor epithelial cells relative to FGFR1. Highly malignant prostate tumor cells, which have lost the FGFR2 tyrosine kinase, retain the cellular response mechanisms to it. Restoration of the FGFR2 kinase to malignant tumors that are refractory to treatment may present a new avenue for gene therapy.

Original languageEnglish (US)
Pages (from-to)1509-1514
Number of pages6
JournalCancer research
Volume58
Issue number7
StatePublished - Apr 1 1998

Fingerprint

Receptor, Fibroblast Growth Factor, Type 2
Fibroblast Growth Factor Receptors
Fibroblast Growth Factor 2
Prostate
Phosphotransferases
Growth
Neoplasms
Fibroblast Growth Factor 7
Epithelial Cells
Population Growth
Fibroblast Growth Factors
Stromal Cells
Genetic Therapy
Protein-Tyrosine Kinases
Androgens
Phenotype
Gene Expression

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Cite this

Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2. / Matsubara, Akio; Kan, Mikio; Feng, Shuju; McKeehan, Wallace L.

In: Cancer research, Vol. 58, No. 7, 01.04.1998, p. 1509-1514.

Research output: Contribution to journalArticle

Matsubara, A, Kan, M, Feng, S & McKeehan, WL 1998, 'Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2', Cancer research, vol. 58, no. 7, pp. 1509-1514.
Matsubara, Akio ; Kan, Mikio ; Feng, Shuju ; McKeehan, Wallace L. / Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2. In: Cancer research. 1998 ; Vol. 58, No. 7. pp. 1509-1514.
@article{3ea1b13c5c4743c2a646f01092b856f1,
title = "Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2",
abstract = "A loss of expression of fibroblast growth factor (FGF) receptor 2 IIIb (FGFR2IIIb), which responds to stroma-derived FGF, accompanies progression of premalignant androgen-responsive rat prostate tumor epithelial cells to the malignant phenotype. Concurrently, the level of FGFR2 gene expression is reduced and lost altogether in over 30{\%} of cells, whereas all malignant cells abnormally express FGFR1, which is normally confined to stromal cells (S. Feng et al., Cancer Res., 57:5369-5378, 1997). To determine the relative roles of the FGFR2 and FGFR1 kinases in growth of malignant cells, we transfected malignant prostate epithelial cells with the wild-type FGFR2IIIb kinase and an artificial chimeric construct (FGFR2IIIb/R1) composed of the FGFR2IIIb ectodomain and the FGFR1 kinase domain. Population growth kinetics, in both the absence and presence of FGF-7, which binds only the FGFR2IIIb ectodomain, were then examined in the transfected cell populations. In contrast to the untransfected malignant tumor cells and those expressing the FGFR2IIIb/R1 chimera, FGF-7 caused a dose-dependent net inhibition of the population growth rates of cells expressing the full-length FGFR2IIIb kinase. The results suggest that although the FGFR2 kinase can mediate positive mitogenic effects, it mediates a net restriction on the growth of prostate tumor epithelial cells relative to FGFR1. Highly malignant prostate tumor cells, which have lost the FGFR2 tyrosine kinase, retain the cellular response mechanisms to it. Restoration of the FGFR2 kinase to malignant tumors that are refractory to treatment may present a new avenue for gene therapy.",
author = "Akio Matsubara and Mikio Kan and Shuju Feng and McKeehan, {Wallace L.}",
year = "1998",
month = "4",
day = "1",
language = "English (US)",
volume = "58",
pages = "1509--1514",
journal = "Cancer Research",
issn = "0008-5472",
publisher = "American Association for Cancer Research Inc.",
number = "7",

}

TY - JOUR

T1 - Inhibition of growth of malignant rat prostate tumor cells by restoration of fibroblast growth factor receptor 2

AU - Matsubara, Akio

AU - Kan, Mikio

AU - Feng, Shuju

AU - McKeehan, Wallace L.

PY - 1998/4/1

Y1 - 1998/4/1

N2 - A loss of expression of fibroblast growth factor (FGF) receptor 2 IIIb (FGFR2IIIb), which responds to stroma-derived FGF, accompanies progression of premalignant androgen-responsive rat prostate tumor epithelial cells to the malignant phenotype. Concurrently, the level of FGFR2 gene expression is reduced and lost altogether in over 30% of cells, whereas all malignant cells abnormally express FGFR1, which is normally confined to stromal cells (S. Feng et al., Cancer Res., 57:5369-5378, 1997). To determine the relative roles of the FGFR2 and FGFR1 kinases in growth of malignant cells, we transfected malignant prostate epithelial cells with the wild-type FGFR2IIIb kinase and an artificial chimeric construct (FGFR2IIIb/R1) composed of the FGFR2IIIb ectodomain and the FGFR1 kinase domain. Population growth kinetics, in both the absence and presence of FGF-7, which binds only the FGFR2IIIb ectodomain, were then examined in the transfected cell populations. In contrast to the untransfected malignant tumor cells and those expressing the FGFR2IIIb/R1 chimera, FGF-7 caused a dose-dependent net inhibition of the population growth rates of cells expressing the full-length FGFR2IIIb kinase. The results suggest that although the FGFR2 kinase can mediate positive mitogenic effects, it mediates a net restriction on the growth of prostate tumor epithelial cells relative to FGFR1. Highly malignant prostate tumor cells, which have lost the FGFR2 tyrosine kinase, retain the cellular response mechanisms to it. Restoration of the FGFR2 kinase to malignant tumors that are refractory to treatment may present a new avenue for gene therapy.

AB - A loss of expression of fibroblast growth factor (FGF) receptor 2 IIIb (FGFR2IIIb), which responds to stroma-derived FGF, accompanies progression of premalignant androgen-responsive rat prostate tumor epithelial cells to the malignant phenotype. Concurrently, the level of FGFR2 gene expression is reduced and lost altogether in over 30% of cells, whereas all malignant cells abnormally express FGFR1, which is normally confined to stromal cells (S. Feng et al., Cancer Res., 57:5369-5378, 1997). To determine the relative roles of the FGFR2 and FGFR1 kinases in growth of malignant cells, we transfected malignant prostate epithelial cells with the wild-type FGFR2IIIb kinase and an artificial chimeric construct (FGFR2IIIb/R1) composed of the FGFR2IIIb ectodomain and the FGFR1 kinase domain. Population growth kinetics, in both the absence and presence of FGF-7, which binds only the FGFR2IIIb ectodomain, were then examined in the transfected cell populations. In contrast to the untransfected malignant tumor cells and those expressing the FGFR2IIIb/R1 chimera, FGF-7 caused a dose-dependent net inhibition of the population growth rates of cells expressing the full-length FGFR2IIIb kinase. The results suggest that although the FGFR2 kinase can mediate positive mitogenic effects, it mediates a net restriction on the growth of prostate tumor epithelial cells relative to FGFR1. Highly malignant prostate tumor cells, which have lost the FGFR2 tyrosine kinase, retain the cellular response mechanisms to it. Restoration of the FGFR2 kinase to malignant tumors that are refractory to treatment may present a new avenue for gene therapy.

UR - http://www.scopus.com/inward/record.url?scp=0032053825&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032053825&partnerID=8YFLogxK

M3 - Article

C2 - 9537256

AN - SCOPUS:0032053825

VL - 58

SP - 1509

EP - 1514

JO - Cancer Research

JF - Cancer Research

SN - 0008-5472

IS - 7

ER -