Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven philadelphia chromosome-like acute B-cell lymphoblastic leukemia

Qi Zhang, Ce Shi, Lina Han, Nitin Jain, Kathryn G. Roberts, Helen Ma, Tianyu Cai, Antonio Cavazos, Yoko Tabe, Rodrigo O. Jacamo, Hong Mu, Yang Zhao, Jing Wang, Shuo Chieh Wu, Fenglin Cao, Zhihong Zeng, Jin Zhou, Yingchang Mi, Elias J. Jabbour, Ross LevineSarah K. Tasian, Charles G. Mullighan, David M. Weinstock, David A. Fruman, Marina Konopleva

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Patients with cytokine receptor-like factor 2 rearranged (CRLF2-re) subgroup Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like B-ALL) have a high relapse rate and poor clinical outcomes. CRFL2-re Ph-like B-ALL is characterized by heightened activation of multiple signaling pathways, including the JAK/STAT and PI3K/AKT/mTOR pathways. We hypothesized that the combined inhibition by JAK2 and mTOR inhibitors would induce an additive antileukemia effect in CRLF2-re Ph-like B-ALL. In this study, we tested the antileukemia efficacy of the type I JAK inhibitor ruxolitinib and type II JAK inhibitor NVP-BBT594 (hereafter abbreviated BBT594) [1] alone and combined with allosteric mTOR inhibitor rapamycin and a second generation ATP-competitive mTOR kinase inhibitor AZD2014. We found that BBT594/AZD2014 combination produced robust anti-leukemic effects in Ph-like cell lines in vitro and in patient-derived xenograft (PDX) cells cultured ex vivo. JAK2/mTOR inhibition arrested the cell cycle and reduced cell survival to a greater extent in Ph-like B-ALL cells with CRLF2-re and JAK2 mutation. Synergistic cell killing was associated with the greater inhibition of JAK2 phosphorylation by BBT594 than by ruxolitinib and the greater inhibition of AKT and 4E-BP1 phosphorylation by AZD2014 than by rapamycin. In vivo, BBT594/AZD2014 co-treatment was most efficacious in reducing spleen size in three Ph-like PDX models, and markedly depleted bone marrow and spleen ALL cells in an ATF7IP-JAK2 fusion PDX. In summary, combined inhibition of JAK/STAT and mTOR pathways by next-generation inhibitors had promising antileukemia efficacy in preclinical models of CRFL2-re Ph-like B-ALL.

Original languageEnglish (US)
Pages (from-to)8027-8041
Number of pages15
JournalOncotarget
Volume9
Issue number8
DOIs
StatePublished - 2018

Keywords

  • JAK
  • MTOR
  • Ph-like ALL

ASJC Scopus subject areas

  • Oncology

Fingerprint

Dive into the research topics of 'Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven philadelphia chromosome-like acute B-cell lymphoblastic leukemia'. Together they form a unique fingerprint.

Cite this