Latent periodic process inference from single-cell RNA-seq data

Shaoheng Liang, Fang Wang, Jincheng Han, Ken Chen

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

The development of a phenotype in a multicellular organism often involves multiple, simultaneously occurring biological processes. Advances in single-cell RNA-sequencing make it possible to infer latent developmental processes from the transcriptomic profiles of cells at various developmental stages. Accurate characterization is challenging however, particularly for periodic processes such as cell cycle. To address this, we develop Cyclum, an autoencoder approach identifying circular trajectories in the gene expression space. Cyclum substantially improves the accuracy and robustness of cell-cycle characterization beyond existing approaches. Applying Cyclum to removing cell-cycle effects substantially improves delineations of cell subpopulations, which is useful for establishing various cell atlases and studying tumor heterogeneity.

Original languageEnglish (US)
Article number1441
JournalNature communications
Volume11
Issue number1
DOIs
StatePublished - Dec 1 2020

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General Physics and Astronomy

MD Anderson CCSG core facilities

  • Bioinformatics Shared Resource

Fingerprint

Dive into the research topics of 'Latent periodic process inference from single-cell RNA-seq data'. Together they form a unique fingerprint.

Cite this