Merging Orthovoltage X-Ray Minibeams spare the proximal tissues while producing a solid beam at the target

F. Avraham Dilmanian, Sunil Krishnan, William E. McLaughlin, Brendan Lukaniec, Jameson T. Baker, Sandeep Ailawadi, Kara N. Hirsch, Renee F. Cattell, Rahul Roy, Joel Helfer, Kurt Kruger, Karl Spuhler, Yulun He, Ramesh Tailor, April Vassantachart, Dakota C. Heaney, Pat Zanzonico, Matthias K. Gobbert, Jonathan S. Graf, Jessica R. NassimiNasrin N. Fatemi, Mark E. Schweitzer, Lev Bangiyev, John G. Eley

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method’s dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM’s low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.

Original languageEnglish (US)
Article number1198
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Merging Orthovoltage X-Ray Minibeams spare the proximal tissues while producing a solid beam at the target'. Together they form a unique fingerprint.

Cite this