MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX

Jingsong Yuan, Junjie Chen

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

DNA double-strand breaks (DSBs) represent one of the most serious forms of DNA damage that can occur in the genome. Here, we show that the DSB-induced signaling cascade and homologous recombination (HR)-mediated DSB repair pathway can be genetically separated. We demonstrate that the MRE11-RAD50-NBS1 (MRN) complex acts to promote DNA end resection and the generation of single-stranded DNA, which is critically important for HR repair. These functions of the MRN complex can occur independently of the H2AX-mediated DNA damage signaling cascade, which promotes stable accumulation of other signaling and repair proteins such as 53BP1 and BRCA1 to sites of DNA damage. Nevertheless, mild defects in HR repair are observed in H2AX-deficient cells, suggesting that the H2AX-dependent DNA damage-signaling cascade assists DNA repair. We propose that the MRN complex is responsible for the initial recognition of DSBs and works together with both CtIP and the H2AX-dependent DNA damage-signaling cascade to facilitate repair by HR and regulate DNA damage checkpoints.

Original languageEnglish (US)
Pages (from-to)1097-1104
Number of pages8
JournalJournal of Biological Chemistry
Volume285
Issue number2
DOIs
StatePublished - 2010

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'MRE11-RAD50-NBS1 complex dictates DNA repair independent of H2AX'. Together they form a unique fingerprint.

Cite this