NExUS: Bayesian simultaneous network estimation across unequal sample sizes

Priyam Das, Christine B. Peterson, Kim Anh Do, Rehan Akbani, Veerabhadran Baladandayuthapani

Research output: Contribution to journalArticlepeer-review

Abstract

Motivation: Network-based analyses of high-throughput genomics data provide a holistic, systems-level understanding of various biological mechanisms for a common population. However, when estimating multiple networks across heterogeneous sub-populations, varying sample sizes pose a challenge in the estimation and inference, as network differences may be driven by differences in power. We are particularly interested in addressing this challenge in the context of proteomic networks for related cancers, as the number of subjects available for rare cancer (sub-)types is often limited. Results: We develop NExUS (Network Estimation across Unequal Sample sizes), a Bayesian method that enables joint learning of multiple networks while avoiding artefactual relationship between sample size and network sparsity. We demonstrate through simulations that NExUS outperforms existing network estimation methods in this context, and apply it to learn network similarity and shared pathway activity for groups of cancers with related origins represented in The Cancer Genome Atlas (TCGA) proteomic data.

Original languageEnglish (US)
Pages (from-to)798-804
Number of pages7
JournalBioinformatics
Volume36
Issue number3
DOIs
StatePublished - Feb 1 2020

ASJC Scopus subject areas

  • Statistics and Probability
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Computational Theory and Mathematics
  • Computational Mathematics

MD Anderson CCSG core facilities

  • Bioinformatics Shared Resource
  • Biostatistics Resource Group
  • Functional Proteomics Reverse Phase Protein Array Core

Fingerprint

Dive into the research topics of 'NExUS: Bayesian simultaneous network estimation across unequal sample sizes'. Together they form a unique fingerprint.

Cite this