Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity

Anastasios Maniakas, Ying C. Henderson, Hu Hei, Shaohua Peng, Yunyun Chen, Yujie Jiang, Shuangxi Ji, Maria Cardenas, Yulun Chiu, Diana Bell, Michelle D. Williams, Marie Claude Hofmann, Steve E. Scherer, David A. Wheeler, Naifa L. Busaidy, Ramona Dadu, Jennifer R. Wang, Maria E. Cabanillas, Mark Zafereo, Faye M. JohnsonStephen Y. Lai

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Context: Anaplastic thyroid cancer (ATC) is a rare, aggressive, and deadly disease. Robust preclinical thyroid cancer models are needed to adequately develop and study novel therapeutic agents. Patient-derived xenograft (PDX) models may resemble patient tumors by recapitulating key genetic alterations and gene expression patterns, making them excellent preclinical models for drug response evaluation. Objective: We developed distinct ATC PDX models concurrently with cell lines and characterized them in vitro and in vivo. Methods: Fresh thyroid tumor from patients with a preoperative diagnosis of ATC was surgically collected and divided for concurrent cell line and PDX model development. Cell lines were created by generating single cells through enzymatic digestion. PDX models were developed following direct subcutaneous implantation of fresh tumor on the flank of immune compromised/athymic mice. Results: Six ATC PDX models and 4 cell lines were developed with distinct genetic profiles. Mutational characterization showed one BRAF/TP53/CDKN2A, one BRAF/CDKN2A, one BRAF/TP53, one TP53 only, one TERT-promoter/HRAS, and one TERT-promoter/KRAS/TP53/NF2/NFE2L2 mutated phenotype. Hematoxylin-eosin staining comparing the PDX models to the original patient surgical specimens show remarkable resemblance, while immunohistochemistry stains for important biomarkers were in full concordance (cytokeratin, TTF-1, PAX8, BRAF). Short tandem repeats DNA fingerprinting analysis of all PDX models and cell lines showed strong concordance with the original tumor. PDX successful establishment rate was 32%. Conclusion: We have developed and characterized 6 novel ATC PDX models with 4 matching cell lines. Each PDX model harbors a distinct genetic profile, making them excellent tools for preclinical therapeutic trials.

Original languageEnglish (US)
Pages (from-to)E4652-E4665
JournalJournal of Clinical Endocrinology and Metabolism
Volume106
Issue number11
DOIs
StatePublished - Nov 1 2021

Keywords

  • BRAF mutation
  • TP53 mutation
  • anaplastic thyroid carcinoma
  • patient-derived xenograft

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Cytogenetics and Cell Authentication Core
  • Research Animal Support Facility
  • Tissue Biospecimen and Pathology Resource
  • Bioinformatics Shared Resource

Fingerprint

Dive into the research topics of 'Novel Anaplastic Thyroid Cancer PDXs and Cell Lines: Expanding Preclinical Models of Genetic Diversity'. Together they form a unique fingerprint.

Cite this