Optimization of vesicular stomatitis virus-G pseudotyped feline immunodeficiency virus vector for minimized cytotoxicity with efficient gene transfer

Jae Jin Song, Boyoung Lee, Jin Woo Chang, Joo Hang Kim, Yunhee Kim Kwon, Heuiran Lee

    Research output: Contribution to journalArticle

    7 Scopus citations


    FIV-based lentiviral vector has shown a unique opportunity as an efficient gene delivery vehicle, especially to nondividing human cells. Here, we genetically reconstructed the FIV-based vector by serially deleting residual virus genes of gag and vif, leading to minimized cytotoxicity together with efficient virus production and gene transfer. The modified FIV- based vector was generated by transiently transfecting 293T cells with three plasmids of the gene transfer vector with minimal gag region, the packaging plasmid without vif and the VSV-G-expressing plasmid. The vector was routinely generated as many as 1×107 transducing particles per ml and easily concentrated by simple centrifugation. The cytotoxic effect significantly decreased in sensitive cells to FIV infection even at high multiplicity of infection (MOI), such as 500. Moreover, the transduction efficiency was consistently retained after cell cycle was arrested in a variety of human cells. Taken together, our results suggest that the modified VSV-G pseudotyped FIV-based vector efficiently transduce dividing and nondividing human cells with minimal cytotoxicity.

    Original languageEnglish (US)
    Pages (from-to)25-30
    Number of pages6
    JournalVirus Research
    Issue number1
    StatePublished - May 1 2003



    • Cytotoxicity
    • FIV-based vector
    • Gag
    • Transduction efficiency
    • Vif

    ASJC Scopus subject areas

    • Cancer Research
    • Virology
    • Infectious Diseases

    Cite this