Pharmacological relevance of endoxifen in a laboratory simulation of breast cancer in postmenopausal patients

Philipp Y. Maximov, Russell E. McDaniel, Daphne J. Fernandes, Puspanjali Bhatta, Valeriy R. Korostyshevskiy, Ramona F. Curpan, V. Craig Jordan

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Background Tamoxifen is metabolically activated via a CYP2D6 enzyme system to the more potent hydroxylated derivatives 4-hydroxytamoxifen and endoxifen. This study addresses the pharmacological importance of endoxifen by simulating clinical scenarios in vitro. Methods Clinical levels of tamoxifen metabolites in postmenopausal breast cancer patients previously genotyped for CYP2D6 were used in vitro along with clinical estrogen levels (estrone and estradiol) in postmenopausal patients determined in previous studies. The biological effects on cell growth were evaluated in a panel of estrogen receptor' positive breast cancer cell lines via cell proliferation assays and real-time polymerase chain reaction (PCR). Data were analyzed with one- and two-way analysis of variance and Student's t test. All statistical tests were two-sided. Results Postmenopausal levels of estrogen-induced proliferation of all test breast cancer cell lines (mean fold induction ± SD vs vehicle control: MCF-7 = 11 ± 1.74, P < .001; T47D = 7.52 ± 0.72, P < .001; BT474 = 1.75 ± 0.23, P < .001; ZR-75-1 = 5.5 ± 1.95, P = .001. Tamoxifen and primary metabolites completely inhibited cell growth regardless of the CYP2D6 genotype in all cell lines (mean fold induction ± SD vs vehicle control: MCF-7 = 1.57 ± 0.38, P = .54; T47D = 1.17 ± 0.23, P = .79; BT474 = 0.96 ± 0.2, P = .98; ZR-75-1 = 0.86 ± 0.67, P = .99). Interestingly, tamoxifen and its primary metabolites were not able to fully inhibit the estrogen-stimulated expression of estrogen-responsive genes in MCF-7 cells (P < .05 for all genes), but the addition of endoxifen was able to produce additional antiestrogenic effect on these genes. Conclusions The results indicate that tamoxifen and other metabolites, excluding endoxifen, completely inhibit estrogenstimulated growth in all cell lines, but additional antiestrogenic action from endoxifen is necessary for complete blockade of estrogen-stimulated genes. Endoxifen is of supportive importance for the therapeutic effect of tamoxifen in a postmenopausal setting.

Original languageEnglish (US)
Article numberdju283
JournalJournal of the National Cancer Institute
Volume106
Issue number10
DOIs
StatePublished - Oct 1 2014
Externally publishedYes

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Pharmacological relevance of endoxifen in a laboratory simulation of breast cancer in postmenopausal patients'. Together they form a unique fingerprint.

Cite this