Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells

Arda Bedirian, Cindy Baldwin, Jun Ichi Abe, Tomoko Takano, Serge Lemay

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Dok-like adapter molecules represent an expanding family of pleckstrin homology (PH) and phosphotyrosine-binding (PTB) domain-containing tyrosine kinase substrates with negative regulatory functions in hematopoietic cell signaling. In a search for nonhematopoietic counterparts to Dok molecules, we identified and characterized Dok-4, a recently cloned member of the family. dok-4 mRNA was strongly expressed in nonhematopoietic organs, particularly the intestine, kidney, and lung, whereas both mRNA and protein were expressed at high levels in cells of epithelial origin. In Caco-2 human colon cancer cells, endogenous Dok-4 underwent tyrosine phosphorylation in response to pervanadate stimulation. In transfected COS cells, Dok-4 was a substrate for the cytosolic tyrosine kinases Src and Fyn as well as for Jak2. Dok-4 could also be phosphorylated by the receptor tyrosine kinase Ret but not by platelet-derived growth factor receptor-β or IGF-IR. In both mammalian cells and yeast, Dok-4 was constitutively localized at the membrane in a manner that required both its PH and PTB domains. The PH and PTB domains of Dok-4 were also required for tyrosine phosphorylation of Dok-4 by Fyn and Ret. Finally, wild type Dok-4 strongly inhibited activation of Elk-1 induced by either Ret or Fyn. The attenuation of this inhibitory effect by deletion of the PH domain and its restoration by the addition of a myristoylation signal suggested an important role for constitutive membrane localization of Dok-4. In summary, Dok-4 is a constitutively membrane-localized adapter molecule that may function as an inhibitor of tyrosine kinase signaling in epithelial cells.

Original languageEnglish (US)
Pages (from-to)19335-19349
Number of pages15
JournalJournal of Biological Chemistry
Volume279
Issue number18
DOIs
StatePublished - Apr 30 2004
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Pleckstrin Homology and Phosphotyrosine-binding Domain-dependent Membrane Association and Tyrosine Phosphorylation of Dok-4, an Inhibitory Adapter Molecule Expressed in Epithelial Cells'. Together they form a unique fingerprint.

Cite this