Prolactin-Induced Protein (PIP) Regulates Proliferation of Luminal A Type Breast Cancer Cells in an Estrogen-Independent Manner

Sanjeev K. Baniwal, Nyam Osor Chimge, V. Craig Jordan, Debu Tripathy, Baruch Frenkel

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Prolactin-induced Protein (PIP), an aspartyl protease unessential for normal mammalian cell function, is required for the proliferation and invasion of some breast cancer (BCa) cell types. Because PIP expression is particularly high in the Luminal A BCa subtype, we investigated the roles of PIP in the related T47D BCa cell line. Nucleic acid and antibody arrays were employed to screen effects of PIP silencing on global gene expression and activation of receptor tyrosine kinases (RTKs), respectively. Expression of PIP-stimulated genes, as defined in the T47D cell culture model, was well correlated with the expression of PIP itself across a cohort of 557 mRNA profiles of diverse BCa tumors, and bioinformatics analysis revealed cJUN and cMYC as major nodes in the PIP-dependent gene network. Among 71 RTKs tested, PIP silencing resulted in decreased phosphorylation of focal adhesion kinase (FAK), ephrin B3 (EphB3), FYN, and hemopoietic cell kinase (HCK). Ablation of PIP also abrogated serum-induced activation of the downstream serine/threonine kinases AKT, ERK1/2, and JNK1. Consistent with these results, PIP-depleted cells exhibited defects in adhesion to fibronectin, cytoskeletal stress fiber assembly and protein secretion. In addition, PIP silencing abrogated the mitogenic response of T47D BCa cells to estradiol (E2). The dependence of BCa cell proliferation was unrelated, however, to estrogen signaling because: 1) PIP silencing did not affect the transcriptional response of estrogen target genes to hormone treatment, and 2) PIP was required for the proliferation of tamoxifen-resistant BCa cells. Pharmacological inhibition of PIP may therefore serve the bases for both augmentation of existing therapies for hormone-dependent tumors and the development of novel therapeutic approaches for hormone-resistant BCa.

Original languageEnglish (US)
Article numbere62361
JournalPloS one
Volume8
Issue number6
DOIs
StatePublished - Jun 3 2013
Externally publishedYes

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Prolactin-Induced Protein (PIP) Regulates Proliferation of Luminal A Type Breast Cancer Cells in an Estrogen-Independent Manner'. Together they form a unique fingerprint.

Cite this