RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax

Junya Sango, Saul Carcamo, Maria Sirenko, Abhishek Maiti, Hager Mansour, Gulay Ulukaya, Lewis E. Tomalin, Nataly Cruz-Rodriguez, Tiansu Wang, Malgorzata Olszewska, Emmanuel Olivier, Manon Jaud, Bettina Nadorp, Benjamin Kroger, Feng Hu, Lewis Silverman, Stephen S. Chung, Elvin Wagenblast, Ronan Chaligne, Ann Kathrin EisfeldDeniz Demircioglu, Dan A. Landau, Piro Lito, Elli Papaemmanuil, Courtney D. DiNardo, Dan Hasson, Marina Konopleva, Eirini P. Papapetrou

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease1, 2, 3, 4, 5–6. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte–monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.

Original languageEnglish (US)
Article number5327
Pages (from-to)241-250
Number of pages10
JournalNature
Volume636
Issue number8041
DOIs
StatePublished - Dec 5 2024

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax'. Together they form a unique fingerprint.

Cite this