Abstract
Granulocyte colony-stimulating factor (G-CSF) mediates " emergency" granulopoiesis during infection, a process that is mimicked by clinical G-CSF use, yet we understand little about the intracellular signaling cascades that control demand-driven neutrophil production. Using a murine model with conditional deletion of signal transducer and activator of transcription 3 (STAT3) in bone marrow, we investigated the cellular and molecular mechanisms of STAT3 function in the emergency granulopoiesis response to G-CSF administration or infection with Listeria monocytogenes, a pathogen that is restrained by G-CSF signaling in vivo. Our results show that STAT3 deficiency renders hematopoietic progenitor cells and myeloid precursors refractory to the growth-promoting functions of G-CSF or L monocytogenes infection. STAT3 is necessary for accelerating granulocyte cell-cycle progression and maturation in response to GCSF. STAT3 directly controls G-CSF-dependent expression of CCAAT-enhancer-binding protein β (C/EBPβ), a crucial factor in the emergency granulopoiesis response. Moreover, STAT3 and C/EBPβ coregulate c-Myc through interactions with the c-myc promoter that control the duration of C/EBPβ occupancy during demand-driven granulopoiesis. These results place STAT3 as an essential mediator of emergency granulopoiesis by its regulation of transcription factors that direct G-CSF-responsive myeloid progenitor expansion.
Original language | English (US) |
---|---|
Pages (from-to) | 2462-2471 |
Number of pages | 10 |
Journal | Blood |
Volume | 116 |
Issue number | 14 |
DOIs | |
State | Published - Oct 7 2010 |
ASJC Scopus subject areas
- Biochemistry
- Immunology
- Hematology
- Cell Biology
MD Anderson CCSG core facilities
- Flow Cytometry and Cellular Imaging Facility