8-chloroadenosine sensitivity in renal cell carcinoma is associated with AMPK activation and mTOR pathway inhibition

Alper Y. Kearney, You Hong Fan, Uma Giri, Babita Saigal, Varsha Gandhi, John V. Heymach, Amado J. Zurita

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The adenosine analog 8-chloroadenosine has been shown to deplete ATP and inhibit tumor growth in hematological malignancies as well as in lung and breast cancer cell lines. We investigated effects of 8-chloroadenosine on clear cell (cc) renal cell carcinoma (RCC) cell lines. 8-chloroadenosine was effective against ccRCC cell viability in vitro, with IC50 ranging from 2 μM in the most sensitive CAKI-1 to 36 μM in the most resistant RXF-393. Proteomic analysis by reverse-phase protein array revealed that 8-chloroadenosine treatment leads to inhibition of the mTOR pathway. In time-course experiments, 8-chloroadenosine treatment rapidly activated AMPK, measured by AMPK and ACC phosphorylation, and subsequently caused dephosphorylation of p70S6K and ribosomal protein RPS6 in the sensitive cell lines. However, in the resistant cell lines, AMPK activity and the mTOR pathway were unaffected by the treatment. We also noted that the resistant cell lines had elevated basal levels of phospho RPS6 and AKT. Inhibition of PI3K pathway enhanced the efficacy of 8-chloroadenosine across all cell lines. Our observations indicate that 8-chloroadenosine activity is associated with inhibition of the mTOR pathway, and that phospho RPS6 and PI3K pathway activation status may determine resistance. Among solid tumors, RCC is one of the few susceptible to mTOR inhibition. We thus infer that 8-chloroadenosine may be effective in RCC by activating AMPK and inhibiting the mTOR pathway.

Original languageEnglish (US)
Article numbere0135962
JournalPloS one
Volume10
Issue number8
DOIs
StatePublished - Aug 27 2015

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

MD Anderson CCSG core facilities

  • Advanced Technology Genomics Core
  • Bioinformatics Shared Resource
  • Flow Cytometry and Cellular Imaging Facility
  • Cytogenetics and Cell Authentication Core

Fingerprint

Dive into the research topics of '8-chloroadenosine sensitivity in renal cell carcinoma is associated with AMPK activation and mTOR pathway inhibition'. Together they form a unique fingerprint.

Cite this