A bisanthracycline (WP631) represses uPAR gene expression and cell migration of RKO colon cancer cells by interfering with transcription factor binding to a chromatin-accessible -148/-124 promoter region

Rajesh R. Nair, Heng Wang, Md S. Jamaluddin, Izabella Fokt, Waldemar Priebe, Douglas D. Boyd

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

The urokinase receptor (uPAR), transcriptionally activated in several cancers, contributes to tumor progression by promoting cell migration and proteolysis, and repressing expression of this gene could be of therapeutic utility. Indeed, targeting regulatory element(s) in the promoter may represent an efficient means for reducing expression because only two alleles have to be neutralized. We previously identified the -148/ -124 promoter region, bound with Sp1 and Sp3, as regulatory for uPAR expression in vitro. The purpose of this study was twofold: to determine (a) the accessibility of this region in its natural chromatin setting and (b) the efficacy of WP631, a bisintercalator favoring GC-rich DNA sequences, in repressing endogenous uPAR expression in RKO colon cancer cells. In these cells, DNaseI hypersensitivity, genomic footprinting, and chromatin immunoprecipitation experiments revealed that the -148/-124 uPAR promoter region was accessible in chromatin and bound with Sp1, thus validating it as a therapeutic target. WP631 treatment competed for transcription factor binding to this regulatory region and reduced uPAR mRNA/protein. However, a chemically related compound (WP629), with low DNA binding affinity, failed to diminish uPAR protein amount. GAPDH mRNA level was only modestly affected by WP631, arguing against the possibility that this bisanthracycline universally represses expression of GC-rich promoter-driven genes. Further, uPAR function, as assessed by migration of cells across a vitronectin-coated filter, was attenuated with WP631. Thus, we have shown that the chromatinized -148/-124 regulatory region of the uPAR promoter is accessible to small molecules and that WP631, which disrupts the interaction of DNA binding proteins with this region, diminishes uPAR expression and function.

Original languageEnglish (US)
Pages (from-to)265-279
Number of pages15
JournalOncology research
Volume15
Issue number5
DOIs
StatePublished - 2005

Keywords

  • Gene expression
  • Sp1
  • Transcription
  • uPAR

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'A bisanthracycline (WP631) represses uPAR gene expression and cell migration of RKO colon cancer cells by interfering with transcription factor binding to a chromatin-accessible -148/-124 promoter region'. Together they form a unique fingerprint.

Cite this