A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

H. S. Sakhalkar, J. Adamovics, G. Ibbott, M. Oldham

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5× scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1×3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5× commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to ∼2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to- agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in opaqueness with time. However, the relative dose distribution was found to be extremely stable up to 90 h postirradiation indicating excellent temporal stability. Excellent interdosimeter reproducibility was also observed between the four dosimeters. Gamma comparison maps between each dosimeter and the average distribution of all four dosimeters showed full agreement at the 2% difference, 2 mm distance-to-agreement level. Dose readout from the 3D dosimetry system was found to agree better with independent film measurement than with treatment planning system calculations in penumbral regions and was generally accurate to within 2% dose difference and 2 mm distance-to-agreement. In conclusion, these studies demonstrate excellent precision, accuracy, robustness, and reproducibility of the PRESAGE/optical-CT system for relative 3D dosimetry and support its potential integration with the RPC H&N credentialing phantom for IMRT verification.

Original languageEnglish (US)
Pages (from-to)71-82
Number of pages12
JournalMedical physics
Volume36
Issue number1
DOIs
StatePublished - 2009

Keywords

  • 3D dosimetry
  • Optical-CT
  • PRESAGE
  • Quality assurance
  • Radiation

ASJC Scopus subject areas

  • Biophysics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system'. Together they form a unique fingerprint.

Cite this