A deep learning approach reveals unexplored landscape of viral expression in cancer

Abdurrahman Elbasir, Ying Ye, Daniel E. Schäffer, Xue Hao, Jayamanna Wickramasinghe, Konstantinos Tsingas, Paul M. Lieberman, Qi Long, Quaid Morris, Rugang Zhang, Alejandro A. Schäffer, Noam Auslander

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

About 15% of human cancer cases are attributed to viral infections. To date, virus expression in tumor tissues has been mostly studied by aligning tumor RNA sequencing reads to databases of known viruses. To allow identification of divergent viruses and rapid characterization of the tumor virome, we develop viRNAtrap, an alignment-free pipeline to identify viral reads and assemble viral contigs. We utilize viRNAtrap, which is based on a deep learning model trained to discriminate viral RNAseq reads, to explore viral expression in cancers and apply it to 14 cancer types from The Cancer Genome Atlas (TCGA). Using viRNAtrap, we uncover expression of unexpected and divergent viruses that have not previously been implicated in cancer and disclose human endogenous viruses whose expression is associated with poor overall survival. The viRNAtrap pipeline provides a way forward to study viral infections associated with different clinical conditions.

Original languageEnglish (US)
Article number785
JournalNature communications
Volume14
Issue number1
DOIs
StatePublished - Dec 2023
Externally publishedYes

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry, Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'A deep learning approach reveals unexplored landscape of viral expression in cancer'. Together they form a unique fingerprint.

Cite this