A Novel Polymer-Encapsulated Multi-Imaging Modality Fiducial Marker with Positive Signal Contrast for Image-Guided Radiation Therapy

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Current fiducial markers (FMs) in external-beam radiotherapy (EBRT) for prostate cancer (PCa) cannot be positively visualized on magnetic resonance imaging (MRI) and create dose perturbation and significant imaging artifacts on computed tomography (CT) and MRI. We report our initial experience with clinical imaging of a novel multimodality FM, NOVA. Methods: We tested Gold Anchor [G-FM], BiomarC [carbon, C-FM], and NOVA FMs in phantoms imaged with kilovoltage (kV) X-rays, transrectal ultrasound (TRUS), CT, and MRI. Artifacts of the FMs on CT were quantified by the relative streak artifacts level (rSAL) metric. Proton dose perturbations (PDPs) were measured with Gafchromic EBT3 film, with FMs oriented either perpendicular to or parallel with the beam axis. We also tested the performance of NOVA-FMs in a patient. Results: NOVA-FMs were positively visualized on all 4 imaging modalities tested. The rSAL on CT was 0.750 ± 0.335 for 2-mm reconstructed slices. In F-tests, PDP was associated with marker type and depth of measurement (p < 10−6); at 5-mm depth, PDP was significantly greater for the G-FM (12.9%, p = 10−6) and C-FM (6.0%, p = 0.011) than NOVA (4.5%). EBRT planning with MRI/CT image co-registration and daily alignments using NOVA-FMs in a patient was feasible and reproducible. Conclusions: NOVA-FMs were positively visible and produced less PDP than G-FMs or C-FMs. NOVA-FMs facilitated MRI/CT fusion and identification of regions of interest.

Original languageEnglish (US)
Article number625
JournalCancers
Volume16
Issue number3
DOIs
StatePublished - Feb 2024

Keywords

  • fiducial marker
  • magnetic resonance imaging
  • NOVA
  • prostate cancer
  • radiation therapy

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'A Novel Polymer-Encapsulated Multi-Imaging Modality Fiducial Marker with Positive Signal Contrast for Image-Guided Radiation Therapy'. Together they form a unique fingerprint.

Cite this