A peptidoglycan monomer with the glutamine to serine change and basic peptides bind in silico to TLR-2 (403-455)

Yufeng Li, Clay L. Efferson, Rajagopal Ramesh, George E. Peoples, Patrick Hwu, Constantin G. Ioannides

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Bacterial cell wall polysaccharides, such as PGN, bind and activate TLR-2, NOD2 and PGRP on monocytes/macrophages and activate inflammation. We found that the peptides containing basic amino acids (cations) at N -terminus and tyrosine at C-terminus interfered with activating ability of PGN. This finding is significant because the ECD of TLR-2 in vivo encounters a large number of proteins or peptides. Some should bind ECD and "pre-form" TLR-2 to respond or not to its activators, although they cannot activate TLR-2 alone. TLR-2 is receptor for a large number of ligands, including lipopeptides and bacterial cell wall glycoproteins. A binding site for lipopeptides has been identified; however, a binding site for soluble or multimeric PGN has not been proposed. To identify the candidate binding sites of peptides and PGN on TLR-2, we modeled docking of peptides and of the PGN monomer (PGN-S-monomer) to extracellular domain (ECD-TLR-2) of the unbound TLR-2. Quantification, in silico, of free energy of binding (DG) identified 2 close sites for peptides and PGN. The PGN-S-monomer binding site is between amino acids TLR-2, 404-430 or more closely TLR-2, 417-428. The peptide-binding site is between amino acids TLR-2, 434-455. Molecular models show PGN-S-monomer inserts its N -acetyl-glucosamine (NAG) deep in the TLR-2 coil, while its terminal lysine interacts with inside (Glu 403) and outside pocket (Tyr 378). Peptides insert their two N -terminal arginines or their C-terminal tyrosines in the TLR-2 coil. PGN did not bind the lipopeptide-binding site in the TLR-2. It can bind the C-terminus, 572-586 (DG = 0.026 kcal), of "lipopeptide-bound" TLR-2. An additional, low-affinity PGN-binding site is TLR-2 (227-237). MTP, MDP, and lysine-less PGN bind to TLR-2, 87-113. This is the first report identifying candidate binding sites of monomer PGN and peptides on TLR-2. Experimental verification of our findings is needed to create synthetic adjuvant for vaccines. Such synthetic PGN can direct both adjuvant and cancer antigen to TLR-2.

Original languageEnglish (US)
Pages (from-to)515-524
Number of pages10
JournalCancer Immunology, Immunotherapy
Volume60
Issue number4
DOIs
StatePublished - Apr 2011

Keywords

  • Bind TLR-2
  • Charged peptides
  • Molecular simulation
  • PGN monomers

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology
  • Oncology
  • Cancer Research

Fingerprint

Dive into the research topics of 'A peptidoglycan monomer with the glutamine to serine change and basic peptides bind in silico to TLR-2 (403-455)'. Together they form a unique fingerprint.

Cite this