A Smart Handheld Edge Device for on-Site Diagnosis and Classification of Texture and Stiffness of Excised Colorectal Cancer Polyps

Ozdemir Can Kara, Jiaqi Xue, Nethra Venkatayogi, Tarunraj G. Mohanraj, Yuki Hirata, Naruhiko Ikoma, S. Farokh Atashzar, Farshid Alambeigi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper proposes a smart handheld textural sensing medical device with complementary Machine Learning (ML) algorithms to enable on-site Colorectal Cancer (CRC) polyp diagnosis and pathology of excised tumors. The proposed unique handheld edge device benefits from a unique tactile sensing module and a dual-stage machine learning algorithms (composed of a dilated residual network and a t-SNE engine) for polyp type and stiffness characterization. Solely utilizing the occlusion-free, illumination-resilient textural images captured by the proposed tactile sensor, the framework is able to sensitively and reliably identify the type and stage of CRC polyps by classifying their texture and stiffness, respectively. Moreover, the proposed handheld medical edge device benefits from internet connectivity for enabling remote digital pathology (boosting the diagnosis in operating rooms and promoting accessibility and equity in medical diagnosis).

Original languageEnglish (US)
Title of host publication2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4662-4668
Number of pages7
ISBN (Electronic)9781665491907
DOIs
StatePublished - 2023
Event2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023 - Detroit, United States
Duration: Oct 1 2023Oct 5 2023

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2023 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2023
Country/TerritoryUnited States
CityDetroit
Period10/1/2310/5/23

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'A Smart Handheld Edge Device for on-Site Diagnosis and Classification of Texture and Stiffness of Excised Colorectal Cancer Polyps'. Together they form a unique fingerprint.

Cite this