A strategy for adenovirus vector targeting with a secreted single chain antibody

Joel N. Glasgow, Galina Mikheeva, Victor Krasnykh, David T. Curiel

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Background: Successful gene therapy will require targeted delivery vectors capable of self-directed localization. In this regard, the use of antibodies or single chain antibody fragments (scFv) in conjunction with adenovirus (Ad) vectors remains an attractive means to achieve cell-specific targeting. However, a longstanding barrier to the development of Ad vectors with genetically incorporated scFvs has been the biosynthetic incompatibility between Ad capsid proteins and antibodyderived species. Specifically, scFv require posttranslational modifications not available to Ad capsid proteins due to their cytoplasmic routing during protein synthesis and virion assembly. Methodology/Principal Findings: We have therefore sought to develop scFv-targeted Ad vectors using a secreted scFv that undergoes the requisite posttranslational modifications and is trafficked for secretion. Formation of the scFv-targeted Ad vector is achieved via highly specific association of the Ad virion and a targeting scFv employing synthetic leucine zipperlike dimerization domains (zippers) that have been optimized for structural compatibility with the Ad capsid and for association with the secreted scFv. Our results show that zipper-containing Ad fiber molecules trimerize and incorporate into mature virions and that zippers can be genetically fused to scFv without ablating target recognition. Most importantly, we show that zipper-tagged virions and scFv provide target-specific gene transfer. Conclusions/Significance: This work describes a new approach to produce targeted Ad vectors using a secreted scFv molecule, thereby avoiding the problem of structural and biosynthetic incompatibility between Ad and a complex targeting ligand. This approach may facilitate Ad targeting using a wide variety of targeting ligands directed towards a variety of cellular receptors.

Original languageEnglish (US)
Article numbere8355
JournalPloS one
Volume4
Issue number12
DOIs
StatePublished - 2009

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'A strategy for adenovirus vector targeting with a secreted single chain antibody'. Together they form a unique fingerprint.

Cite this