Accident-precipitating factors for crashes in turbine-powered general aviation aircraft

Douglas D. Boyd, Alan Stolzer

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

General aviation (14CFR Part 91) accounts for 83% of civil aviation fatalities. While much research has focused on accident causes/pilot demographics in this aviation sector, studies to identify factors leading up to the crash (accident-precipitating factors) are few. Such information could inform on pre-emptive remedial action. With this in mind and considering the paucity of research on turbine-powered aircraft accidents the study objectives were to identify accident-precipitating factors and determine if the accident rate has changed over time for such aircraft operating under 14CFR Part 91. The NTSB Access database was queried for accidents in airplanes (<12,501 lb) powered by 1-2 turbine engines and occurring between 1989 and 2013. We developed and utilized an accident-precipitating factor taxonomy. Statistical analyses employed logistic regression, contingency tables and a generalized linear model with Poisson distribution. The "Checklist/Flight Manual Not Followed" was the most frequent accident-precipitating factor category and carried an excess risk (OR 2.34) for an accident with a fatal and/or serious occupant injury. This elevated risk reflected an over-representation of accidents with fatal and/or serious injury outcomes (p < 0.001) in the "non-adherence to V Speeds" sub-category. For accidents grouped in the "Inadequate Pre-Flight Planning/Inspection/Procedure" the "inadequate weather planning" sub-category accounted (p = 0.036) for the elevated risk (OR 2.22) of an accident involving fatal and/or serious injuries. The "Violation FARs/AIM Deviation" category was also associated with a greater risk for fatal and/or serious injury (OR 2.59) with "Descent below the MDA/failure to execute the missed approach" representing the largest sub-category. Accidents in multi-engine aircraft are more frequent than their single engine counterparts and the decline (50%) in the turbine aircraft accident rate over the study period was likely due, in part, to a 6-fold increased representation of single engine airplanes. In conclusion, our study is the first to identify novel precursive factors for accidents involving turbine aircraft operating under 14CFR Part 91. This research highlights areas that should receive further emphasis in training/recurrency in a pre-emptive attempt to nullify candidate accident-precipitating factor(s).

Original languageEnglish (US)
Pages (from-to)209-216
Number of pages8
JournalAccident Analysis and Prevention
Volume86
DOIs
StatePublished - Jan 1 2016

Keywords

  • Accident-precipitating factors
  • General aviation accidents
  • Injury severity
  • Turbine aircraft

ASJC Scopus subject areas

  • Human Factors and Ergonomics
  • Safety, Risk, Reliability and Quality
  • Public Health, Environmental and Occupational Health

Fingerprint

Dive into the research topics of 'Accident-precipitating factors for crashes in turbine-powered general aviation aircraft'. Together they form a unique fingerprint.

Cite this