Activation of the PI3K/mTOR pathway following PARP inhibition in small cell lung cancer

Robert J. Cardnell, Ying Feng, Seema Mukherjee, Lixia Diao, Pan Tong, C. Allison Stewart, Fatemeh Masrorpour, You Hong Fan, Monique Nilsson, Yuqiao Shen, John V. Heymach, Jing Wang, Lauren A. Byers

Research output: Contribution to journalArticlepeer-review

67 Scopus citations

Abstract

Small cell lung cancer (SCLC) is an aggressive malignancy with limited treatment options. We previously found that PARP is overexpressed in SCLC and that targeting PARP reduces cell line and tumor growth in preclinical models. However, SCLC cell lines with PI3K/mTOR pathway activation were relatively less sensitive to PARP inhibition. In this study, we investigated the proteomic changes in PI3K/mTOR and other pathways that occur following PAPR inhibition and/or knockdown in vitro and in vivo. Using reverse-phase protein array, we found the proteins most significantly upregulated following treatment with the PARP inhibitors olaparib and rucaparib were in the PI3K/mTOR pathway (p-mTOR, p- AKT, and pS6) (p-0.02). Furthermore, amongst the most significantly down-regulated proteins were LKB1 and its targets AMPK and TSC, which negatively regulate the PI3K pathway (p0.042). Following PARP knockdown in cell lines, phosphorylated mTOR, AKT and S6 were elevated and LKB1 signaling was diminished. Global ATP concentrations increased following PARP inhibition (p0.02) leading us to hypothesize that the observed increased PI3K/mTOR pathway activation following PARP inhibition results from decreased ATP usage and a subsequent decrease in stress response signaling via LKB1. Based on these results, we then investigated whether co-targeting with a PARP and PI3K inhibitor (BKM-120) would work better than either single agent alone. A majority of SCLC cell lines were sensitive to BKM-120 at clinically achievable doses, and cMYC expression was the strongest biomarker of response. At clinically achievable doses of talazoparib (the most potent PARP inhibitor in SCLC clinical testing) and BKM-120, an additive effect was observed in vitro. When tested in two SCLC animal models, a greater than additive interaction was seen (p0.008). The data presented here suggest that combining PARP and PI3K inhibitors enhances the effect of either agent alone in preclinical models of SCLC, warranting further investigation of such combinations in SCLC patients.

Original languageEnglish (US)
Article numbere0152584
JournalPloS one
Volume11
Issue number4
DOIs
StatePublished - Apr 2016

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

MD Anderson CCSG core facilities

  • Bioinformatics Shared Resource
  • Functional Proteomics Reverse Phase Protein Array Core
  • Research Animal Support Facility

Fingerprint

Dive into the research topics of 'Activation of the PI3K/mTOR pathway following PARP inhibition in small cell lung cancer'. Together they form a unique fingerprint.

Cite this