An instantaneous photomultiplier tube gain-tuning method for PET or gamma camera detectors using an LED network

Hongdi Li, Yaqiang Liu, Tao Xing, Yu Wang, Jorge Uribe, Hossain Baghaei, Shuping Xie, Soonseok Kim, Rocio Ramirez, Wai Hoi Wong

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

A photomultiplier tube (PMT) gain can change with many environmental factors, such as room temperature, patient load, short-term or long-term radiation exposure, and time. Unbalanced PMT gains degrade the image resolution and quality in a positron emission tomography (PET) camera or a gamma camera. This paper presented a new method to instantaneously recover the original manufacture PMT gain setting using a blue light-emitting diode (LED) network. Each LED shines directly into the center of a scintillation crystal block from the PMT side, and the light is collected by the surrounding PMTs. The gain tuning is done by changing the gains of these surrounding PMTs or their following amplifiers to have the same signal output. An LED has well-known problems of large light-yield varieties and is very sensitive to temperature. To overcome these problems, the light outputs of two neighboring LEDs are aligned first by a shared PMT. Each LED flashes at 250-KHz pulse rate, the data acquisition for the gain tuning can be finished within a very short time so the LED temperature effect can be ignored. The amount of LED light output is set as close as possible to the amount of scintillation light by programming the width or height of the pulses; therefore, the same electronics can be used for data acquisition and tuning. We estimated a 12 module PET camera with 924 PMTs in a PMT-quadrant-sharing design can be tuned in 1 min.

Original languageEnglish (US)
Pages (from-to)1295-1299
Number of pages5
JournalIEEE Transactions on Nuclear Science
Volume52
Issue number5 I
DOIs
StatePublished - Oct 2005

Keywords

  • Calibration
  • Light-emitting diode (LED)
  • Photo-multiplier tube (PMT)
  • Positron emission tomography (PET)

ASJC Scopus subject areas

  • Nuclear and High Energy Physics
  • Nuclear Energy and Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'An instantaneous photomultiplier tube gain-tuning method for PET or gamma camera detectors using an LED network'. Together they form a unique fingerprint.

Cite this