Augmentation of Radiation Response by Panitumumab in Models of Upper Aerodigestive Tract Cancer

Tim J. Kruser, Eric A. Armstrong, Amol J. Ghia, Shyhmin Huang, Deric L. Wheeler, Robert Radinsky, Daniel J. Freeman, Paul M. Harari

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Purpose: To examine the interaction between panitumumab, a fully human anti-epidermal growth factor receptor monoclonal antibody, and radiation in head-and-neck squamous cell carcinoma and non-small-cell lung cancer cell lines and xenografts. Methods and Materials: The head-and-neck squamous cell carcinoma lines UM-SCC1 and SCC-1483, as well as the non-small-cell lung cancer line H226, were studied. Tumor xenografts in athymic nude mice were used to assess the in vivo activity of panitumumab alone and combined with radiation. In vitro assays were performed to assess the effect of panitumumab on radiation-induced cell signaling, apoptosis, and DNA damage. Results: Panitumumab increased the radiosensitivity as measured by the clonogenic survival assay. Radiation-induced epidermal growth factor receptor phosphorylation and downstream signaling through mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) was inhibited by panitumumab. Panitumumab augmented radiation-induced DNA damage by 1.2-1.6-fold in each of the cell lines studied as assessed by residual γ-H2AX foci after radiation. Radiation-induced apoptosis was increased 1.4-1.9-fold by panitumumab, as evidenced by Annexin V-fluorescein isothiocyanate staining and flow cytometry. In vivo, the combination therapy of panitumumab and radiation was superior to panitumumab or radiation alone in the H226 xenografts (p = 0.01) and showed a similar trend in the SCC-1483 xenografts (p = 0.08). In vivo, immunohistochemistry demonstrated the ability of panitumumab to augment the antiproliferative and antiangiogenic effects of radiation. Conclusion: These studies have identified a favorable interaction in the combination of radiation and panitumumab in upper aerodigestive tract tumor models, both in vitro and in vivo. These data suggest that clinical investigations examining the combination of radiation and panitumumab in the treatment of epithelial tumors warrant additional pursuit.

Original languageEnglish (US)
Pages (from-to)534-542
Number of pages9
JournalInternational Journal of Radiation Oncology Biology Physics
Volume72
Issue number2
DOIs
StatePublished - Oct 1 2008
Externally publishedYes

Keywords

  • EGFR
  • Epidermal growth factor receptor
  • Panitumumab
  • Radiation

ASJC Scopus subject areas

  • Radiation
  • Oncology
  • Radiology Nuclear Medicine and imaging
  • Cancer Research

Fingerprint

Dive into the research topics of 'Augmentation of Radiation Response by Panitumumab in Models of Upper Aerodigestive Tract Cancer'. Together they form a unique fingerprint.

Cite this