TY - JOUR
T1 - Bismuth Nanoparticle and Polyhydroxybutyrate Coatings Enhance the Radiopacity of Absorbable Inferior Vena Cava Filters for Fluoroscopy-Guided Placement and Longitudinal Computed Tomography Monitoring in Pigs
AU - Damasco, Jossana A.
AU - Huang, Steven Y.
AU - Perez, Joy Vanessa D.
AU - Manongdo, John Andrew T.
AU - Dixon, Katherine A.
AU - Williams, Malea L.
AU - Jacobsen, Megan C.
AU - Barbosa, Roland
AU - Canlas, Gino Martin
AU - Chintalapani, Gouthami
AU - Melancon, Adam D.
AU - Layman, Rick R.
AU - Fowlkes, Natalie W.
AU - Whitley, Elizabeth M.
AU - Melancon, Marites P.
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/4/11
Y1 - 2022/4/11
N2 - Inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) are promising alternatives to metallic filters and their associated risks and complications. Incorporating high-Z nanoparticles (NPs) improves PPDO IVCFs' radiopacity without adversely affecting their safety or performance. However, increased radiopacity from these studies are insufficient for filter visualization during fluoroscopy-guided PPDO IVCF deployment. This study focuses on the use of bismuth nanoparticles (BiNPs) as radiopacifiers to render sufficient signal intensity for the fluoroscopy-guided deployment and long-term CT monitoring of PPDO IVCFs. The use of polyhydroxybutyate (PHB) as an additional layer to increase the surface adsorption of NPs resulted in a 2-fold increase in BiNP coating (BiNP-PPDO IVCFs, 3.8%; BiNP-PPDO + PHB IVCFs, 6.2%), enabling complete filter visualization during fluoroscopy-guided IVCF deployment and, 1 week later, clot deployment. The biocompatibility, clot-trapping efficacy, and mechanical strength of the control PPDO (load-at-break, 6.23 ± 0.13 kg), BiNP-PPDO (6.10 ± 0.09 kg), and BiNP-PPDO + PHB (6.15 ± 0.13 kg) IVCFs did not differ significantly over a 12-week monitoring period in pigs. These results indicate that BiNP-PPDO + PHB can increase the radiodensity of a novel absorbable IVCF without compromising device strength. Visualizing the device under conventional radiographic imaging is key to allow safe and effective clinical translation of the device.
AB - Inferior vena cava filters (IVCFs) constructed with poly-p-dioxanone (PPDO) are promising alternatives to metallic filters and their associated risks and complications. Incorporating high-Z nanoparticles (NPs) improves PPDO IVCFs' radiopacity without adversely affecting their safety or performance. However, increased radiopacity from these studies are insufficient for filter visualization during fluoroscopy-guided PPDO IVCF deployment. This study focuses on the use of bismuth nanoparticles (BiNPs) as radiopacifiers to render sufficient signal intensity for the fluoroscopy-guided deployment and long-term CT monitoring of PPDO IVCFs. The use of polyhydroxybutyate (PHB) as an additional layer to increase the surface adsorption of NPs resulted in a 2-fold increase in BiNP coating (BiNP-PPDO IVCFs, 3.8%; BiNP-PPDO + PHB IVCFs, 6.2%), enabling complete filter visualization during fluoroscopy-guided IVCF deployment and, 1 week later, clot deployment. The biocompatibility, clot-trapping efficacy, and mechanical strength of the control PPDO (load-at-break, 6.23 ± 0.13 kg), BiNP-PPDO (6.10 ± 0.09 kg), and BiNP-PPDO + PHB (6.15 ± 0.13 kg) IVCFs did not differ significantly over a 12-week monitoring period in pigs. These results indicate that BiNP-PPDO + PHB can increase the radiodensity of a novel absorbable IVCF without compromising device strength. Visualizing the device under conventional radiographic imaging is key to allow safe and effective clinical translation of the device.
KW - bismuth
KW - medical device
KW - radiopacity
UR - http://www.scopus.com/inward/record.url?scp=85127938497&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85127938497&partnerID=8YFLogxK
U2 - 10.1021/acsbiomaterials.1c01449
DO - 10.1021/acsbiomaterials.1c01449
M3 - Article
C2 - 35343679
AN - SCOPUS:85127938497
SN - 2373-9878
VL - 8
SP - 1676
EP - 1685
JO - ACS Biomaterials Science and Engineering
JF - ACS Biomaterials Science and Engineering
IS - 4
ER -