Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise

Maya Styner, William R. Thompson, Kornelia Galior, Gunes Uzer, Xin Wu, Sanjay Kadari, Natasha Case, Zhihui Xie, Buer Sen, Andrew Romaine, Gabriel M. Pagnotti, Clinton T. Rubin, Martin A. Styner, Mark C. Horowitz, Janet Rubin

Research output: Contribution to journalArticlepeer-review

116 Scopus citations

Abstract

Marrow adipose tissue (MAT), associated with skeletal fragility and hematologic insufficiency, remains poorly understood and difficult to quantify. We tested the response of MAT to high fat diet (HFD) and exercise using a novel volumetric analysis, and compared it to measures of bone quantity. We hypothesized that HFD would increase MAT and diminish bone quantity, while exercise would slow MAT acquisition and promote bone formation. Eight week-old female C57BL/6 mice were fed a regular (RD) or HFD, and exercise groups were provided voluntary access to running wheels (RD-E, HFD-E). Femoral MAT was assessed by μCT (lipid binder osmium) using a semi-automated approach employing rigid co-alignment, regional bone masks and was normalized for total femoral volume (TV) of the bone compartment. MAT was 2.6-fold higher in HFD relative to RD mice. Exercise suppressed MAT in RD-E mice by more than half compared with RD. Running similarly inhibited MAT acquisition in HFD mice. Exercise significantly increased bone quantity in both diet groups. Thus, HFD caused significant accumulation of MAT; importantly running exercise limited MAT acquisition while promoting bone formation during both diets. That MAT is exquisitely responsive to diet and exercise, and its regulation by exercise appears to be inversely proportional to effects on exercise induced bone formation, is relevant for an aging and sedentary population.

Original languageEnglish (US)
Pages (from-to)39-46
Number of pages8
JournalBone
Volume64
DOIs
StatePublished - Jul 2014
Externally publishedYes

Keywords

  • Bone micro architecture
  • Exercise
  • Lipid
  • Marrow adipose tissue
  • Micro-CT
  • Quantitative image analysis

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Histology
  • Physiology

Fingerprint

Dive into the research topics of 'Bone marrow fat accumulation accelerated by high fat diet is suppressed by exercise'. Together they form a unique fingerprint.

Cite this