Bortezomib-resistant nuclear factor κB expression in stem-like cells in mantle cell lymphoma

Hyun Joo Jung, Zheng Chen, Luis Fayad, Michael Wang, Jorge Romaguera, Larry W. Kwak, Nami McCarty

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

Mantle cell lymphoma (MCL) is a subtype of B-cell Non-Hodgkin's Lymphoma (NHL) and accounts for approximately 6% of all lymphomas. Unlike small lymphocytic lymphoma and chronic lymphocytic lymphoma, which are relatively sensitive to chemotherapy, MCL is highly refractory to most chemotherapy, and has the worst survival rate among NHL patients. Stem-like cells in MCL, which we have termed mantle cell lymphoma-initiating cells (MCL-ICs), enriched in the population that are lack of prototypic B-cell marker CD19. These cells were able to self-renew upon serial transplantation and are highly tumorigenic. Importantly, these stem-like cells confer chemotherapeutic resistance to MCL. In this report, we show that stem-like MCL-ICs are resistant to bortezomib, as well as chemotherapeutic regimens containing bortezomib, despite constitutive nuclear factor-κB (NF-κB) expression. Interestingly, bortezomib treatment induced MCL-IC differentiation in plasma-like cells with upregulated expression of CD38 and CD138. This process was accompanied by expression of plasma cell differentiation transcriptional factors, BLIMP-1 and IRF4. This article is the first to show that stem-like MCL cells utilize constitutive NF-κB expression for survival. Given that the NF-κB expression in MCL-ICs is resistant to bortezomib, it will be important to find alternative therapeutic strategies to inhibit NF-κB expression.

Original languageEnglish (US)
Pages (from-to)107-118.e2
JournalExperimental Hematology
Volume40
Issue number2
DOIs
StatePublished - Feb 2012

ASJC Scopus subject areas

  • Molecular Biology
  • Hematology
  • Genetics
  • Cell Biology
  • Cancer Research

Fingerprint

Dive into the research topics of 'Bortezomib-resistant nuclear factor κB expression in stem-like cells in mantle cell lymphoma'. Together they form a unique fingerprint.

Cite this